You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/20923
Title: 
Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Universidade Estadual de Campinas (UNICAMP)
  • Universidade de São Paulo (USP)
ISSN: 
1932-6203
Sponsorship: 
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Abstract: 
Background: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness.Methodology/Principal Findings: Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NOx-), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and N-epsilon-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NOx- levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NOx- levels were partially restored.Conclusion: Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery.
Issue Date: 
28-Dec-2012
Citation: 
Plos One. San Francisco: Public Library Science, v. 7, n. 12, p. 15, 2012.
Time Duration: 
15
Publisher: 
Public Library Science
Source: 
http://dx.doi.org/10.1371/journal.pone.0053318
URI: 
http://hdl.handle.net/11449/20923
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/20923
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.