Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/21697
- Title:
- Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
- Dimitrov, D. K.
- Universidade Estadual Paulista (UNESP)
- 0377-0427
- Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.
- 1-Apr-2003
- Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 153, n. 1-2, p. 171-180, 2003.
- 171-180
- Elsevier B.V.
- ultraspherical polynomials
- Laguerre polynomials
- zeros
- convexity
- monotonicity
- http://dx.doi.org/10.1016/S0377-0427(02)00645-3
- http://hdl.handle.net/11449/21697
- Acesso aberto
- outro
- http://repositorio.unesp.br/handle/11449/21697
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.