You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21697
Title: 
Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
Author(s): 
Dimitrov, D. K.
Institution: 
Universidade Estadual Paulista (UNESP)
ISSN: 
0377-0427
Abstract: 
Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.
Issue Date: 
1-Apr-2003
Citation: 
Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 153, n. 1-2, p. 171-180, 2003.
Time Duration: 
171-180
Publisher: 
Elsevier B.V.
Keywords: 
  • ultraspherical polynomials
  • Laguerre polynomials
  • zeros
  • convexity
  • monotonicity
Source: 
http://dx.doi.org/10.1016/S0377-0427(02)00645-3
URI: 
http://hdl.handle.net/11449/21697
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/21697
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.