You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21717
Title: 
Zeros of Jacobi functions of second kind
Author(s): 
Institution: 
  • Univ Vigo
  • Universidade Estadual Paulista (UNESP)
  • Univ Catholique Louvain
ISSN: 
0377-0427
Abstract: 
The number of zeros in (- 1, 1) of the Jacobi function of second kind Q(n)((alpha, beta)) (x), alpha, beta > - 1, i.e. The second solution of the differential equation(1 - x(2))y (x) + (beta - alpha - (alpha + beta + 2)x)y' (x) + n(n + alpha + beta + 1)y(x) = 0,is determined for every n is an element of N and for all values of the parameters alpha > - 1 and beta > - 1. It turns out that this number depends essentially on alpha and beta as well as on the specific normalization of the function Q(n)((alpha, beta)) (x). Interlacing properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of Laguerre's and Hermite's functions of second kind. (c) 2005 Elsevier B.V. All rights reserved.
Issue Date: 
1-Apr-2006
Citation: 
Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 188, n. 1, p. 65-76, 2006.
Time Duration: 
65-76
Publisher: 
Elsevier B.V.
Keywords: 
  • Jacobi functions of second kind
  • zeros
  • Jacobi polynomials
  • interlacing properties of zeros
  • Laguerre and Hermite functions of second kind
Source: 
http://dx.doi.org/10.1016/j.cam.2005.03.055
URI: 
http://hdl.handle.net/11449/21717
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/21717
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.