Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/21717
- Title:
- Zeros of Jacobi functions of second kind
- Univ Vigo
- Universidade Estadual Paulista (UNESP)
- Univ Catholique Louvain
- 0377-0427
- The number of zeros in (- 1, 1) of the Jacobi function of second kind Q(n)((alpha, beta)) (x), alpha, beta > - 1, i.e. The second solution of the differential equation(1 - x(2))y (x) + (beta - alpha - (alpha + beta + 2)x)y' (x) + n(n + alpha + beta + 1)y(x) = 0,is determined for every n is an element of N and for all values of the parameters alpha > - 1 and beta > - 1. It turns out that this number depends essentially on alpha and beta as well as on the specific normalization of the function Q(n)((alpha, beta)) (x). Interlacing properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of Laguerre's and Hermite's functions of second kind. (c) 2005 Elsevier B.V. All rights reserved.
- 1-Apr-2006
- Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 188, n. 1, p. 65-76, 2006.
- 65-76
- Elsevier B.V.
- Jacobi functions of second kind
- zeros
- Jacobi polynomials
- interlacing properties of zeros
- Laguerre and Hermite functions of second kind
- http://dx.doi.org/10.1016/j.cam.2005.03.055
- http://hdl.handle.net/11449/21717
- Acesso aberto
- outro
- http://repositorio.unesp.br/handle/11449/21717
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.