You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/22170
Title: 
Global dynamics of stationary solutions of the extended Fisher-Kolmogorov equation
Author(s): 
Institution: 
  • Univ Autonoma Barcelona
  • Universidade Estadual Paulista (UNESP)
ISSN: 
0022-2488
Sponsorship: 
  • MICIIN/FEDER
  • Generalitat de Catalunya
  • ICREA Academia
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Sponsorship Process Number: 
  • MICIIN/FEDER: MTM2008-03437
  • Generalitat de Catalunya: 2009SGR-410
  • CNPq: 305204/2009-2
  • PHB-2009-0025
Abstract: 
In this paper we study the fourth order differential equation d(4)u/dt(4) + q d(2)u/dt(2) + u(3) - u = 0, which arises from the study of stationary solutions of the Extended Fisher-Kolmogorov equation. Denoting x = u, y = du/dt, z = d(2)u/dt(2), v = d(3)u/dt(3) this equation becomes equivalent to the polynomial system. (x) over dot = y, (y) over dot = z, (z) over dot = v, (v) over dot = x - qz - x(3) with (x, y, z, v) is an element of R(4) and q is an element of R. As usual, the dot denotes the derivative with respect to the time t. Since the system has a first integral we can reduce our analysis to a family of systems on R(3). We provide the global phase portrait of these systems in the Poincare ball (i.e., in the compactification of R(3) with the sphere S(2) of the infinity). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657425]
Issue Date: 
1-Nov-2011
Citation: 
Journal of Mathematical Physics. Melville: Amer Inst Physics, v. 52, n. 11, p. 12, 2011.
Time Duration: 
12
Publisher: 
American Institute of Physics (AIP)
Source: 
http://dx.doi.org/10.1063/1.3657425
URI: 
http://hdl.handle.net/11449/22170
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/22170
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.