

SISTEMA DE ANÁLISE DE PARTÍCULAS DE DESGASTE EM ÓLEOS LUBRIFICANTES

Prof. Dr. Mauro Hugo Mathias

UNESP/ Campus Guaratinguetá

Prof. Dr. Valdeci Donizete Gonçalves

IFF/ Campus Macaé

Prof. Luis Fernando de Almeida

UNITAU

SUMÁRIO

- Objetivos
- •Métodos de análise de óleo
- Sistemas de quantificação e avaliação de partículas de desgaste
- Tipos de partículas de desgaste
- Sistema desenvolvido
- Resultados
- Conclusões
- Publicações

OBJETIVOS

- Monitoramento de óleos lubrificantes industriais que operam no interior de redutores. Este dispositivo possibilita aumentar a vida útil do equipamento com o controle da taxa de acréscimo das partículas encontradas nos lubrificantes.
- Desenvolvimento de um sistema para capturar e processar imagens de partículas de desgaste em amostras de óleos lubrificantes.

- Implementação de um software para contagem de partículas de desgaste, com base na norma ISO 4406:1999
- •Desenvolvimento de metodologia computacional para análise morfológica de partículas de desgaste

MÉTODOS DE ANÁLISE DE ÓLEO

MÉTODOS DE ANÁLISE DE ÓLEO

Laboratorial (off-line) ou método de campo (on-line)

Espectrometria de emissão atômica na análise do óleo

Análise Espectrométrica de Óleo (SOA) é uma técnica analítica para identificar a composição elementar de partículas de até, aproximadamente, 8 mícrons, contidas em amostras de óleo de máquinas ou equipamentos industriais lubrificados.

Cromatografia gasosa

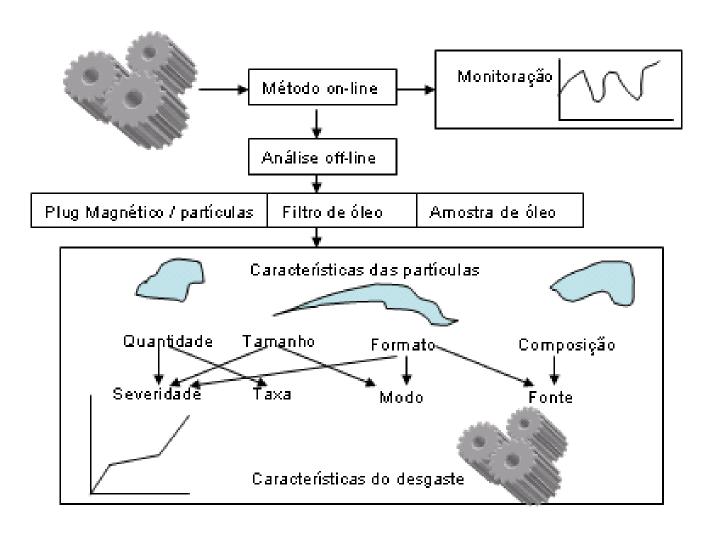
Cromatografia é uma técnica laboratorial para separar misturas químicas em seus componentes individuais. O princípio básico da cromatografia é que componentes diferentes aderem a uma superfície sólida, ou se dissolvem em um filme de líquido, formando uma graduação.

MÉTODOS DE ANÁLISE DE ÓLEO

Técnica da ferrografia na análise de partículas de desgaste

Segundo Raimond J. Dalley,1991, a ferrografia é uma técnica laboratorial que, por meio de exame microscópico, é capaz de fazer a análise de partículas, separando-as de fluidos.

Análise de graxa


A graxa é utilizada para a lubrificação de sistemas onde não é possível o uso do óleo, tais como caixas de engrenagens e rolamentos.

A análise de graxa deve ser aplicada quando se tem necessidade do controle da lubrificação na maioria dos rolamentos

MÉTODOS DE ANÁLISE DE ÓLEO

Caracterização das partículas de desgaste

SISTEMAS DE QUANTIFICAÇÃO E AVALIAÇÃO DE PARTÍCULAS DE DESGASTE

CASPA: Computer-Aided Systematic Particle Analysis –
(Roylance; Albidevi; Luxmoore (1992)

CAVE: Computer Aided Vision Engineering – (Roylance, et al, 1993)

An integrated intelligence system for wear debris analysis (Zhongxiao Peng, 2002)

Recognition of texture types of wear particles - WPTA (M. S. Laghari, 2003)

SISTEMAS DE QUANTIFICAÇÃO E AVALIAÇÃO DE PARTÍCULAS DE DESGASTE

A comparison of texture feature extraction methods for machine condition monitoring and failure analysis (Gp. Stachowiak, 2005)

SYCLOPS - Systematic Classification of Oil-wetted Particles

Sistema de classificação quantitativa de partículas de desgaste, desenvolvido para o centro de detecção de falhas RAF

(T.P. Sperring e T.J. Nowell, 2005)

TIPOS PARTÍCULAS DE DESGASTE

Serão abordados 4 tipos de partículas de desgaste específico:

- Desgaste de abrasão, "Cutting wear"
- Desgaste provocado pela fricção, "Rubbing wear"
- Desgaste por fadiga, "Fatigue"
- Deslizamento severo, "Severe sliding"

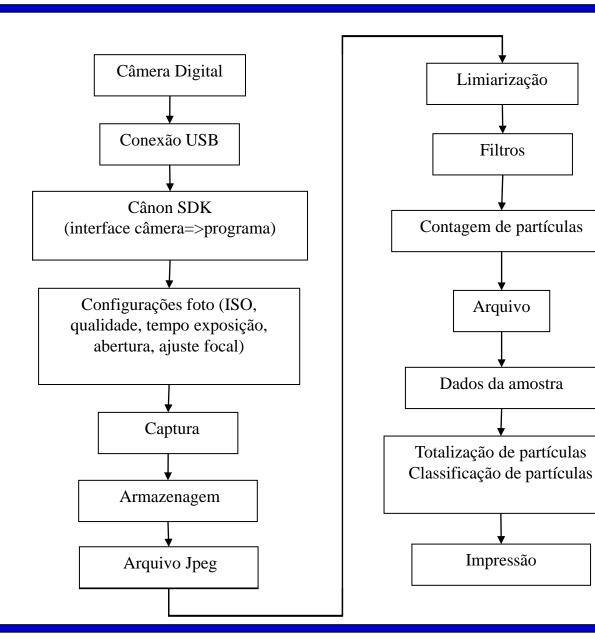

SISTEMA DESENVOLVIDO

Módulo de filtragem

Aquisição de imagens por microscopia

Processamento de imagens

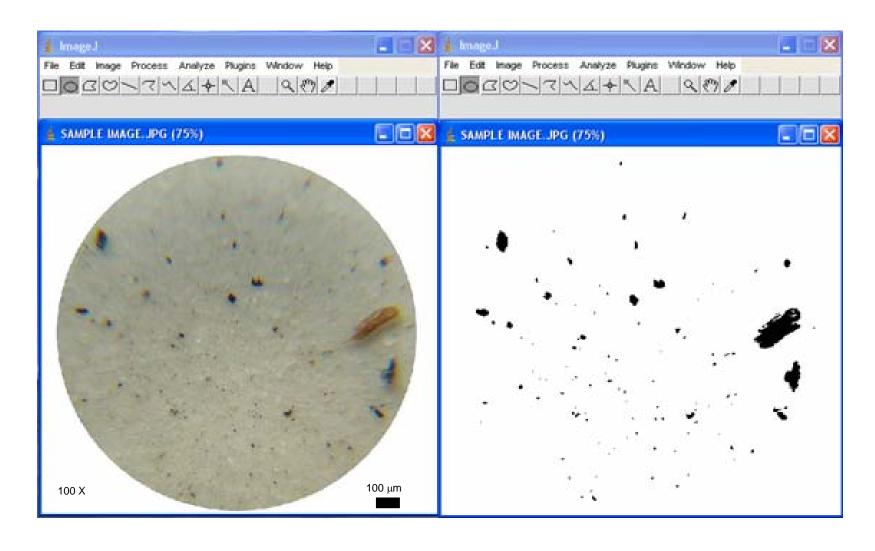
DIAGRAMA DE BLOCOS FUNCIONAL DO SISTEMA



	e partículas em liq				
Nº código	Do nº partículas	Até nº partículas			
26	320000	640000			
25	160000	320000			
24	80000	160000			
23	40000	80000			
22	20000	40000			
21	10000	20000			
20	5000	10000			
▼ 19	2500	5000			
√ 18	1300	2500			
17	640	1300			
≠ 16	320	640			
15	160	320			
14	80	160			
13	40	80			
12	20	40			
11	10	20			
10	5	10			
9	2,5	5			
8	1,3	2,5			
7	0,6	1,3			
6	0,3	0,6			
	•	•			

Exemplo de classificação ISO 19/18/16

INTERFACE CÂMERA/COMPUTADOR


IASS - SOFTWARE PARA O SISTEMA DE AQUISIÇÃO DE IMAGEM

PROCESSO DE LIMIARIZAÇÃO

RESULTADOS

ANÁLISE DE AMOSTRA DE ÓLEO PELO MÉTODO DE SIMILARIDADE


Hi	ivel Normal [E]		E =< R	
Acima	do Alarme [F]		F>R	
Rec	omendado [R]	17	15	12
Até	ISO			
10.000.000	30			
5.000.000	29			
2.500.000	28			
1.300.000	27			
640.000	26			
320.000	25			
160.000	24			
80.000	23			
40.000	22			
20.000	21			
10.000	20			
5.000	19			
2.500	18	F		
1.300	17	R	F	
640	16			
320	15		R	
160	14			F
80	13			
40	12			R
20	11			
10	10			
5	9			
2,5	8			
1,3	7 6			
0,6	ь	>=4µm	>= Guns	>=14µm
		>=4jim	>= 6µm	>=14µm

Dados da Amostra											
Diâmetro padrão 35 m m											
Diâm etro amostra	1	mm									
Volume padrão	1	ml									
Volum e fitrado	25	ml									
Aum ento ótico	100	vezes									
Classificação	18	/ 17 / 14									
Hivel Conforme ISO 4406:1999											

lmagem da membrana ampliada: 100x

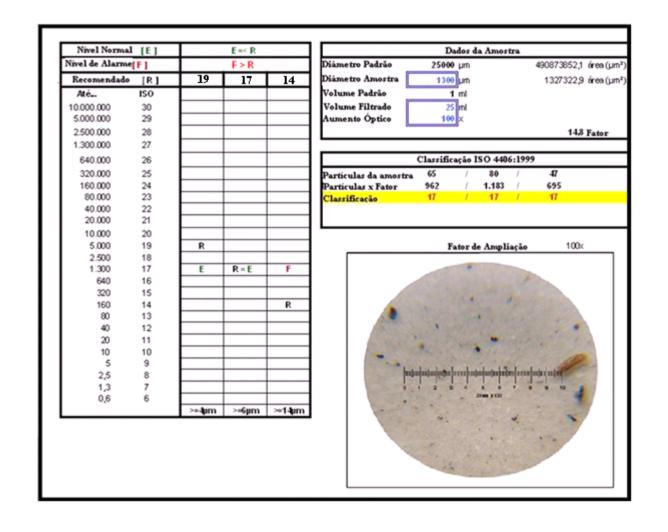


Imagem obtida de uma amostra de óleo retirada de uma unidade hidráulica de uma Trefila

RELATÓRIO DO MÉTODO DE CONTAGEM E CLASSIFICAÇÃO COMPUTACIONAL

EXTRAÇÃO DE CARACTERÍSTICAS PARA ANÁLISE MORFOLÓGICA - ABRASÃO

Tabela 3 – Classificação de partículas conforme características de formato

Abrasão	Área	Perí-		Altura	Diâm.	Diâm.	Feret	Alonga-	Razão
		metro	Largura		Principal	Menor		mento	Aspecto
1	1436,57	385,25	108,28	83,43	60,56	30,20	113,57	2,99	1,30
2	1408,21	469,78	120,12	98,82	55,24	32,46	123,70	3,85	1,22
3	1333,99	431,45	108,28	100,59	55,08	30,84	120,36	3,54	1,08
4	766,43	347,65	91,12	84,02	46,57	20,95	105,93	2,64	1,08
5	1533,91	491,82	120,71	108,28	56,21	34,74	128,62	4,24	1,11
6	1093,10	376,65	90,53	100,00	56,43	24,66	122,71	2,55	0,91
7	981,41	401,65	117,75	50,89	56,79	22,00	118,24	2,26	2,31
8	965,65	406,38	97,63	99,41	51,01	24,10	118,49	2,79	0,98
9	1325,58	554,81	129,59	95,27	60,74	27,79	150,86	2,69	1,36
10	1206,54	531,65	118,34	100,00	48,24	31,85	124,52	4,89	1,18

EXTRAÇÃO DE CARACTERÍSTICAS PARA ANÁLISE MORFOLÓGICA - FADIGA

FADIGUEmod1

FADIGUEmod2

FADIGUEmod3

FADIGUEmod4

FADIGUEmod5

FADIGUEmod6

FADIGUEmod7

FADIGUEmod8

FADIGUEmod9

FADIGUEmod10

Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р
FADIGA	Area	Χ	Υ	Perim,	BX	BY	Width	Height	Major	Minor	Angle	Circ,	Feret	alongamento	aspect ratio
1	13855,89	107,06	80,18	594,9	23,39	9,36	162,57	140,35	154,43	114,24	158,89	0,49	172,38	6,684996268	1,158318489
2	14397,23	108,23	81,06	1085,33	23,53	8,24	164,71	142,35	157,01	116,75	159,24	0,15	175,98	6,799801292	1,157077626
3	14055,26	104,01	79,05	544,52	14,04	9,36	171,93	129,24	160,56	111,46	166,68	0,6	179,13	5,5401222	1,330315692
4	14616,46	104,93	81,94	590,9	15,2	9,36	170,76	140,35	156,5	118,91	163,26	0,53	173,98	7,326682628	1,216672604
5	14797,72	105,55	83,25	586,42	23,39	9,36	162,57	139,77	152,82	123,29	160,97	0,54	172,38	9,350152387	1,163125134
6	12907,9	107,4	84,04	580,6	22,22	9,36	160,23	131,58	145,66	112,83	0,63	0,48	162,67	7,873591228	1,217738258
7	11928,46	113,17	82,36	590,94	25,73	9,36	160,23	140,35	135,48	112,1	165,39	0,43	166,76	10,58939264	1,141645885
8	12203,76	105,99	83,87	608,24	17,54	9,36	168,42	140,35	137,65	112,88	171,79	0,41	172,66	10,11425111	1,2
9	15225,2	105,25	82,54	632,71	23,39	9,36	162,57	142,11	153,13	126,6	154,67	0,48	172,38	10,54391255	1,143972979
10	12284,78	102,95	78,72	520,36	28,24	9,41	142,94	133,53	134,55	116,25	164,45	0,57	152,95	13,70491803	1,070471055

EXTRAÇÃO DE CARACTERÍSTICAS PARA ANÁLISE MORFOLÓGICA - FRICÇÃO

Α	В	С	D	E	F	G	Н		J	K	L	M	N	0	Р
	Area	Χ	Υ	Perim,	BX	BY	Width	Height	Major	Minor	Angle	Circ,	Feret	alongamento	aspect ratio
1	1802,9	123,22	125,74	235,38	99,97	84	40,82	70,99	60,19	38,14	86,53	0,41	71,62	4,459410431	0,575010565
2	1769,33	122,66	125,09	234,28	99,5	83,61	40,63	70,65	59,62	37,79	86,54	0,41	71,28	4,462207971	0,575088464
3	1780,37	124,76	127,92	248,22	101,81	85,54	41,57	72,29	61,27	37	86,15	0,36	72,93	4,049031726	0,575044958
4	1726,67	125,17	128,18	256,74	101,81	85,54	41,57	72,29	61,12	35,97	85,13	0,33	72,93	3,860437376	0,575044958
5	1544,29	123,27	124,33	265,16	99,41	83,53	40,59	70,59	59,78	32,89	89,32	0,28	71,21	3,446262551	0,575010625
6	1763,67	120,71	123,98	263,26	91,76	83,53	48,24	70,59	56,46	39,77	92,06	0,32	71,21	5,765727981	0,683382915
7	2109,69	124,05	123,75	273,13	91,76	83,53	58,24	70,59	55,86	48,09	89,28	0,36	71,21	13,37837838	0,825046041
8	2243,6	124,1	122,4	266,78	91,76	83,53	58,24	70,59	59,3	48,17	88,82	0,4	71,21	9,655884996	0,825046041
9	2405,88	122,85	121,2	269,42	91,76	83,53	58,24	70,59	61,3	49,97	102,37	0,42	71,21	9,820829656	0,825046041
10	2573,36	123,16	119,28	258,83	91,76	78,24	58,24	75,88	65,91	49,71	94,02	0,48	76,39	7,137037037	0,767527675

EXTRAÇÃO DE CARACTERÍSTICAS PARA ANÁLISE MORFOLÓGICA – DESLIZAMENTO SEVERO

Severe Sliding mod1

Severe Sliding mod2

Severe Sliding mod3

Severe Sliding mod4

Severe Sliding mod5

Severe Sliding mod6

Severe Sliding mod7

Severe Sliding mod8

Severe Sliding mod9

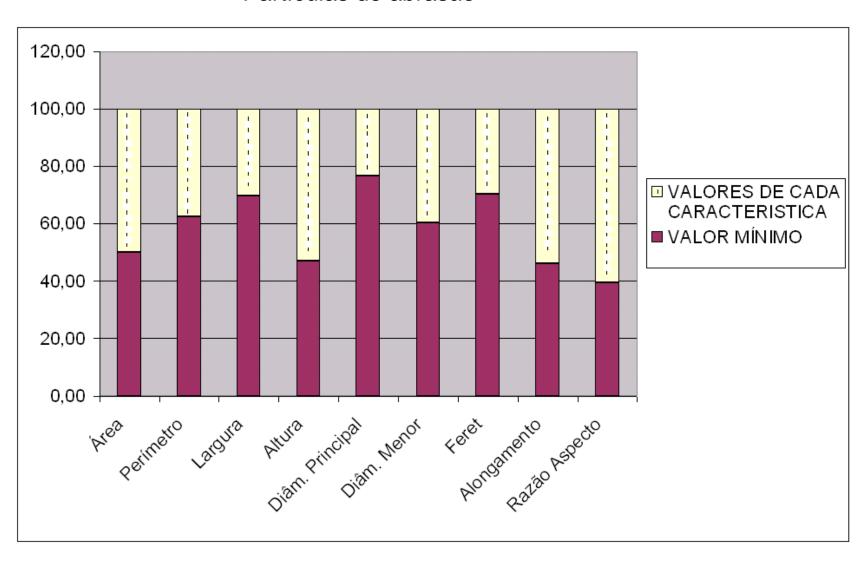
Severe Sliding mod10

Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0	Р
	Area	Χ	Υ	Perim,	BX	BY	Width	Height	Major	Minor	Angle	Circ,	Feret	alongamento	aspect ratio
1	16411,37	106,78	92,22	555,57	23,31	30,67	180,36	126,38	178,91	116,8	12,98	0,67	184,72	4,761069071	1,427124545
2	14430,56	107,82	86,07	586,63	23,31	30,67	180,36	122,7	181,86	101,03	8,82	0,53	184,72	3,499814425	1,46992665
3	17799,02	107,89	86,85	614,74	23,31	3,68	180,36	153,37	175,45	129,17	21,47	0,59	184,72	6,582108902	1,175979657
4	14413,62	115,27	92,4	553,75	36,81	30,67	166,87	126,38	161,36	113,74	20,8	0,59	174,24	5,77698446	1,320382972
5	17742,94	110,27	95,54	569,65	23,31	30,67	180,36	132,51	179,62	125,77	6,29	0,69	184,72	5,671123491	1,361104822
6	12210,39	100,86	82,13	505,66	23,31	30,67	165,64	116,56	173,44	89,64	15,4	0,6	173,41	3,139379475	1,421070693
7	8824,58	76,93	100,61	677,42	25,41	23,24	131,35	155,67	152,02	73,91	120,49	0,24	167,3	2,892459352	0,843772082
8	8325,54	77,86	104,76	617,95	25,41	31,89	131,35	147,02	145,57	72,82	125,03	0,27	166,94	3,001924399	0,893415862
9	14943,55	110,75	95,57	595,64	23,31	30,67	180,36	126,38	179,53	105,98	18,64	0,53	184,72	3,881849082	1,427124545
10	16546,86	119,24	91,53	653,62	23,31	30,67	194,47	126,38	204,64	102,95	21,32	0,49	212,1	3,024781198	1,538771958

CLASSIFICAÇÃO DAS PARTÍCULAS POR SEUS ATRIBUTOS MORFOLÓGICOS

Tabela 3 – Classificação de partículas conforme características de formato

Abrasão	Área	Perí-		Altura	Diâm.	Diâm.	Feret	Alonga-	Razão
		metro	Largura		Principal	Menor		mento	Aspecto
1	1436,57	385,25	108,28	83,43	60,56	30,20	113,57	2,99	1,30
2	1408,21	469,78	120,12	98,82	55,24	32,46	123,70	3,85	1,22
3	1333,99	431,45	108,28	100,59	55,08	30,84	120,36	3,54	1,08
4	766,43	347,65	91,12	84,02	46,57	20,95	105,93	2,64	1,08
5	1533,91	491,82	120,71	108,28	56,21	34,74	128,62	4,24	1,11
6	1093,10	376,65	90,53	100,00	56,43	24,66	122,71	2,55	0,91
7	981,41	401,65	117,75	50,89	56,79	22,00	118,24	2,26	2,31
8	965,65	406,38	97,63	99,41	51,01	24,10	118,49	2,79	0,98
9	1325,58	554,81	129,59	95,27	60,74	27,79	150,86	2,69	1,36
10	1206,54	531,65	118,34	100,00	48,24	31,85	124,52	4,89	1,18

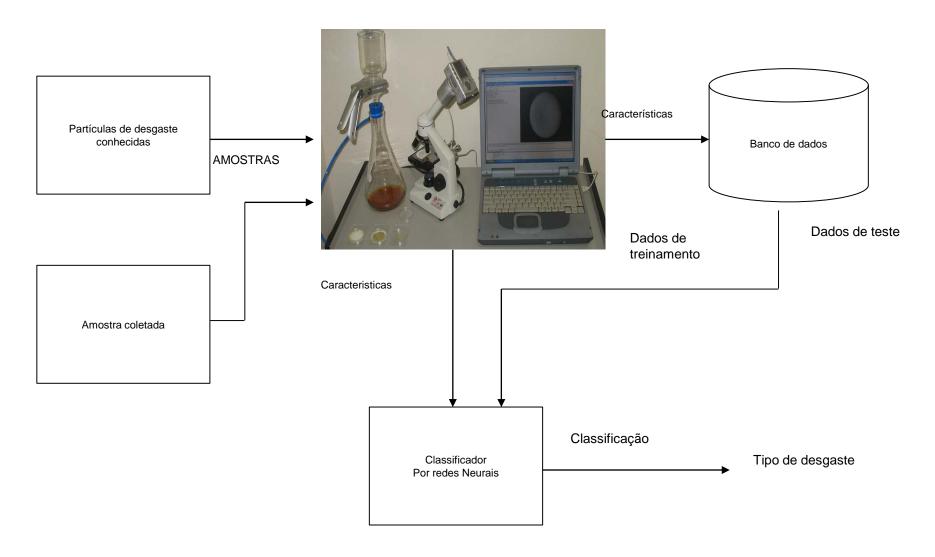

Teste realizado de verificação de uma partícula de abrasão

Tipo de									
Desgaste	,								
em Teste	Area	Perí-		Altura	Diâm.	Diâm.	Feret	Alonga-	Razão
Abrasão		metro	Largura		Principal	Menor		mento	Aspecto
Inserir o									
valor	982	402	117	51	57	22	119	2,26	2,31
Abrasão	1	1	1	1	1	1	1	1	1

CLASSIFICAÇÃO DAS PARTÍCULAS POR SEUS ATRIBUTOS MORFOLÓGICOS

Partículas de abrasão

RESULTADO DA CLASSIFICAÇÃO POR ATRIBUTOS MORFOLÓGICOS

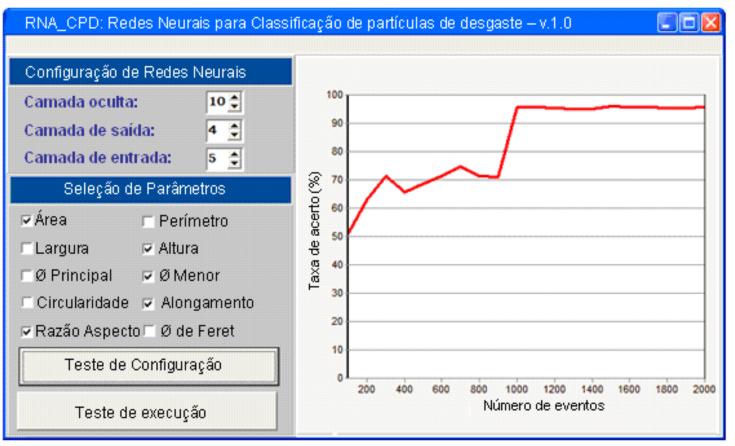


Amostra x número de partículas encontradas

	Número de Partículas	
Amostra de Partículas Avaliadas	Encontradas	%
Abrasão	10	25%
Fadiga	10	25%
Deslizamento Severo	10	25%
Fricção	10	25%
Total de Partículas da Amostra	40	100%

CLASSIFICAÇÃO DAS PARTÍCULAS UTILIZANDO REDES NEURAIS

CLASSIFICAÇÃO DAS PARTÍCULAS UTILIZANDO REDES NEURAIS



- Melhor configuração para combinações entre características

	Atribu	itos (camada de	entrada)		TA (%)
área	altura	ø menor	alongamento	razão de	96,0
				aspecto	
área	altura	ø menor	circularidade	alongamento	95,2
área	ø menor	circularidade	alongamento	razão de	95,2
				aspecto	
área	altura	circularidade	alongamento	razão de	95,2
				aspecto	
área	altura	ø menor	circularidade	razão de	94,1
				aspecto	

ESTABILIZAÇÃO DAS REDES NEURAIS PARA MELHOR TAXA DE ACERTO

Verificou-se que não foi necessário utilizar todos os atributos disponibilizados pelo RNA_CPD para que a melhor taxa de acerto, que se estabilizou a partir de 1.000 eventos, fosse alcançada.

CONCLUSÕES

• Nesta pesquisa, técnicas de processamento de imagem e análise computacional de dados foram aplicadas para obter informações relevantes das imagens de partículas de desgaste.

• Foi desenvolvido um sistema de aquisição de imagem para utilização na análise de partículas de desgaste de óleos lubrificantes industriais.

• Também foi introduzida a análise morfológica das partículas envolvidas na amostra, classificando-as de acordo com os critérios morfológicos adotados.

CONCLUSÕES

- Apresentou-se uma aplicação para a análise microscópica de partículas de desgaste encontradas em óleos lubrificantes industriais, realizando a classificação e análise de partículas de desgaste que incluem o uso de um sistema especialista e de redes neurais.
- As vantagens desta aplicação incluem:
- (1) sua aplicação computacional;
- (2) baixo custo;
- (3) utilização de uma interface amigável com aplicação de técnicas de processamento de imagens.
- As duas tecnologias, IASS e RNA_CPD, realizam suas tarefas para os diagnósticos quantitativo conforme norma ISO 4406 e qualitativo com a análise morfológica das partículas.
- O sistema desenvolvido pode ser utilizado para identificação do modo de desgaste em equipamentos industriais.

PUBLICAÇÕES

- •GONÇALVES, Valdeci Donizete; MATHIAS, M. H. . A MECHATRONIC SYSTEM APPLIED TO WEAR PARTICLE ANALYSIS. In: ECOTRIB 2007: Joint European Conference on Tribology and Final Conference of COST 532 action: Tiboscience and Tribotechnology, 2007, Ljubljana. Proceedings of the European Conference on Tribology and Final Conference on COST 532 action: Triboscience and Tribotechnology. Ljubljana: Slovenian Society for Tribology, 2007. v. 2. p. 1065-1072.
- •GONÇALVES, Valdeci Donizete; MATHIAS, M. H. . Sistema de Processamento de Imagens Aplicado ao Ensino de Técnicas de Manutenção Preditiva. In: ICECE 2007 International Conference on Engineering and Computer Education, 2007, Santos. International Conference on Engineering and Computer Education, ICECE 2007, 2007. v. 1. p. 1094-1097.
- •MATHIAS, M. H.; GONÇALVES, Valdeci Donizete; Tomazini, José Elias. SISTEMA DE PROCESSAMENTO DE IMAGENS PARA ANÁLISE DE PARTÍCULAS DE DESGASTE. In: 9a. COTEQ, 2007, SALVADOR. Anais da Conferência Internacional sobre Tecnologia de Equipamentos 9a. COTEQ, 2007.
- •MATHIAS, M. H.; GONÇALVES, Valdeci Donizete; Tomazini, José Elias. Sistema de Processamento de Imagens para Análise de partículas de Desgaste. Revista ABENDE, São Paulo, p. 32 34, 02 maio 2008.

PUBLICAÇÕES

- •GONÇALVES, Valdeci Donizete; MATHIAS, M. H. . A Mechatronic System Applied to Wear Particle Analysis. Tribologia: finnish journal of tribology, v. 27, p. 21-28, 2008.
- •GONÇALVES, Valdeci Donizete; ALMEIDA, L. F.; MATHIAS, M. H. . Wear Particle Classifier Based on an Artificial Neural Network. In: 2nd European Conference on Tribology, ECOTRIB 2009, 2009, Pisa. 2nd European Conference on Tribology ECOTRIB 2009. Pisa: ETS, 2009. v. 01. p. 263-268.
- •SOARES, A. M. S.; GONÇALVES, V. D. . Controle de um Manipulador Robótico Auxiliado por um Sistema de Visão. In: I Workshop Universidade-Empresa em Automação, Energia e Materiais, 2004, Taubaté. I Workshop Universidade-Empresa em Automação, Energia e Materiais, 2004.
- •SOARES, A. M. S.; GONÇALVES, V. D. . Interface Gráfica para Manipulação de Mecanismo Robótico. In: Encontro de Iniciação Científica e III Mostra de Pós-graduação, 2002, Taubaté. do VII Encontro de Iniciação Científica e III Mostra de Pós-graduação. Taubaté: Universidade de Taubaté, 2002. v. 1. p. 232-232.
- •SOARES, A. M. S.; GONÇALVES, V. D. . Controle de Um Manipulador Robótico em Uma Tarefa. In: III Congresso Nacional de Engenharia Mecânica, 2004, Belém, Pa. III Congresso Nacional de Engenharia Mecânica, 2004.
- •Valdeci Donizete Gonçalves. Controle de Um Manipulador Robótico Auxiliado Por Um Sistema de Visão. 2004. Dissertação (Mestrado em Engenharia Mecânica) Universidade de Taubaté, . Orientador: Alvaro Manoel de Souza Soares.