Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/113144
Título: 
Rank Aggregation for Pattern Classifier Selection in Remote Sensing Images
Autor(es): 
Instituição: 
  • Universidade Estadual de Campinas (UNICAMP)
  • Universidade Estadual Paulista (UNESP)
  • Universidade Federal de Minas Gerais (UFMG)
ISSN: 
1939-1404
Financiador: 
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Microsoft Research
Número do financiamento: 
  • CAPES: 1260-12-0
  • CNPq: 306580/2012-8
  • CNPq: 484254/2012-0
  • CNPq: 304352/2012-8
  • FAPESP: 10/14910-0
  • FAPESP: 10/05647-4
  • FAPESP: 12/18768-0
  • FAPESP: 13/08645-0
Resumo: 
In the past few years, segmentation and classification techniques have become a cornerstone of many successful remote sensing algorithms aiming at delineating geographic target objects. One common strategy relies on using multiple complex features to guide the delineation process with the objective of gathering complementary information for improving classification results. However, a persistent problem in this approach is how to combine different and noncorrelated feature descriptors automatically. In this regard, one solution is to combine them through multiple classifier systems (MCSs) in which the diversity of simple/non-complex classifiers is an essential issue in the definition of appropriate strategies for classifier fusion. In this paper, we propose a novel strategy for selecting classifiers (whereby a classifier is taken as a pair of learning method plus image descriptor) to be combined in MCS. In the proposed solution, diversity measures are used to assess the degree of agreement/disagreement between pairs of classifiers and ranked lists are created to sort them according to their diversity score. Thereafter, the classifiers are also sorted according to their performance through different evaluation measures (e. g., kappa and tau indices). In the end, a rank aggregation method is proposed to select the most suitable classifiers based on both the diversity and the effectiveness performance of classifiers. The proposed fusion framework has targeted at coffee crop classification and urban recognition but it is general enough to be used in a variety of other pattern recognition problems. Experimental results demonstrate that the novel strategy yields good results when compared to several baselines while using fewer classifiers and being much more efficient.
Data de publicação: 
1-Abr-2014
Citação: 
Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 7, n. 4, p. 1103-1115, 2014.
Duração: 
1103-1115
Publicador: 
Institute of Electrical and Electronics Engineers (IEEE)
Palavras-chaves: 
  • Coffee crop classification
  • diversity measures
  • information fusion
  • meta-learning
  • urban recognition
Fonte: 
http://dx.doi.org/10.1109/JSTARS.2014.2303813
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/113144
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.