Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/113238
Título: 
A Spatial and Temporal Prediction Model of Corn Grain Yield as a Function of Soil Attributes
Autor(es): 
Instituição: 
  • Universidade Federal do Vale do São Francisco (UNIVASF)
  • Universidade Estadual Paulista (UNESP)
  • Consiglio Ric & Sperimentaz Agr CRA
  • John Deere & Co
  • Univ Kentucky
ISSN: 
0002-1962
Financiador: 
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Número do financiamento: 
CAPES: 8492-11-5
Resumo: 
Effective site-specific management requires an understanding of the soil and environmental factors influencing crop yield variability. Moreover, it is necessary to assess the techniques used to define these relationships. The objective of this study was to assess whether statistical models that accounted for heteroscedastic and spatial-temporal autocorrelation were superior to ordinary least squares (OLS) models when evaluating the relationship between corn (Zea mays L.) yield and soil attributes in Brazil. The study site (10 by 250 m) was located in Sao Paulo State, Brazil. Corn yield (planted with 0.9-m spacing) was measured in 100 4.5- by 10-m cells along four parallel transects (25 observations per transect) during six growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. Ordinary least squares, generalized least squares assuming heteroscedasticity (GLS(he)), spatial-temporal least squares assuming homoscedasticity (GLS(sp)), and spatial-temporal assuming heteroscedasticity (GLS(he-sp)) analyses were used to estimate corn yield. Soil acidity (pH) was the factor that most influenced corn yield with time in this study. The OLS model suggested that there would be a 0.59 Mg ha(-1) yield increase for each unit increase in pH, whereas with GLS(he-sp) there would be a 0.43 Mg ha(-1) yield increase, which means that model choice impacted prediction and regression parameters. This is critical because accurate estimation of yield is necessary for correct management decisions. The spatial and temporal autocorrelation assuming heteroscedasticity was superior to the OLS model for prediction. Historical data from several growing seasons should help better identify the cause and effect relationship between crop yield and soil attributes.
Data de publicação: 
1-Nov-2013
Citação: 
Agronomy Journal. Madison: Amer Soc Agronomy, v. 105, n. 6, p. 1878-1887, 2013.
Duração: 
1878-1887
Publicador: 
Amer Soc Agronomy
Fonte: 
http://dx.doi.org/10.2134/agronj2012.0456
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/113238
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.