Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/128970
- Title:
- Quasimodular instanton partition function and the elliptic solution of Korteweg-de Vries equations
- He, Wei
- Universidade Estadual Paulista (UNESP)
- 0003-4916
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- FAPESP: 2011/21812-8
- The Gauge/Bethe correspondence relates Omega-deformed N = 2 supersymmetric gauge theories to some quantum integrable models, in simple cases the integrable models can be treated as solvable quantum mechanics models. For SU(2) gauge theory with an adjoint matter, or with 4 fundamental matters, the potential of corresponding quantum model is the elliptic function. If the mass of matter takes special value then the potential is an elliptic solution of KdV hierarchy. We show that the deformed prepotential of gauge theory can be obtained from the average densities of conserved charges of the classical KdV solution, the UV gauge coupling dependence is assembled into the Eisenstein series. The gauge theory with adjoint mass is taken as the example.
- 1-Feb-2015
- Annals Of Physics. San Diego: Academic Press Inc Elsevier Science, v. 353, p. 150-162, 2015.
- 150-162
- Elsevier B.V.
- Seiberg-Witten theory
- Instanton partition function
- KdV hierarchy
- Virasoro algebra
- http://www.sciencedirect.com/science/article/pii/S0003491614003194
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/128970
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.