You are in the accessibility menu

Please use this identifier to cite or link to this item:
Biomechanics Studies in Dentistry: Bioengineering Applied in Oral Implantology
Universidade Estadual Paulista (UNESP)
The application of engineering knowledge in dentistry has helped the understanding of biomechanics aspects related to osseointegrated implants. Several techniques have been used to evaluate the biomechanical load oil implants comprising the use of photoelastic stress analysis, finite element stress analysis, and strain-gauge analysis. Therefore, the purpose of this Study was to describe engineering methods used in dentistry to evaluate the biomechanical behavior of osseointegrated implants. Photoelasticity provides good qualitative information oil the overall location and concentration of stresses but produces limited quantitative information. The method serves as ail important tool for determining the critical stress points in a material and is often used for determining stress concentration factors in irregular geometries. The application of strain-gauge method oil dental implants is based oil the use of electrical resistance strain gauges and its associated equipment and provides both in vitro and vivo measurements strains under static and dynamic loads. However, strain-gauge method provides only the data regarding strain at the gauge. Finite element analysis can Simulate stress using a computer-created model to calculate stress, strain, and displacement. Such analysis has the advantage of allowing several conditions to be changed easily and allows measurement of stress distribution around implants at optional points that are difficult to examine clinically All the 3 methodologies call be useful to evaluate biomechanical implant behavior close to the clinical condition but the researcher should have enough knowledge in model fabrication (experimental delineation) and results analysis.
Issue Date: 
Journal of Craniofacial Surgery. Philadelphia: Lippincott Williams & Wilkins, v. 20, n. 4, p. 1173-1177, 2009.
Time Duration: 
Lippincott Williams & Wilkins
  • Dental implants
  • biomechanics
  • photoelastic analysis
  • strain-gauge analysis
  • finite element analysis
Access Rights: 
Acesso restrito
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.