Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/66275
Título: 
Variational studies and replica symmetry breaking in the generalization problem of the binary perceptron
Autor(es): 
Instituição: 
  • Universidade de São Paulo (USP)
  • Universidade Estadual Paulista (UNESP)
ISSN: 
1063-651X
Resumo: 
We analyze the average performance of a general class of learning algorithms for the nondeterministic polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a rule implemented by a teacher network of similar architecture. A variational approach is used in trying to identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry breaking (RSB) is studied. The variational method does not determine a unique potential but it allows construction of a class with a unique minimum within each first order valley. Members of this class improve on the performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may be locally stable we discuss the possibility that it fails to be the correct saddle point globally. ©2000 The American Physical Society.
Data de publicação: 
1-Nov-2000
Citação: 
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 62, n. 5 B, p. 6999-7007, 2000.
Duração: 
6999-7007
Palavras-chaves: 
  • Computer simulation
  • Entropy
  • Failure analysis
  • Gibbs free energy
  • Integration
  • Learning algorithms
  • Monte Carlo methods
  • Neural networks
  • Phase transitions
  • Polynomials
  • Potential energy
  • Thermodynamic stability
  • Binary perceptrons
  • Replica symmetry breaking (RSB)
  • Statistical mechanics
Fonte: 
http://dx.doi.org/10.1103/PhysRevE.62.6999
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/66275
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.