Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/69496
Título: 
Segmentação de dados de perfilamento a laser em áreas urbanas utilizando uma abordagem Bayesiana
Título alternativo: 
Laser scanning data segmentation in urban areas by a Bayesian framework
Autor(es): 
Instituição: 
Universidade Estadual Paulista (UNESP)
ISSN: 
1413-4853
Resumo: 
In this paper is presented a region-based methodology for Digital Elevation Model segmentation obtained from laser scanning data. The methodology is based on two sequential techniques, i.e., a recursive splitting technique using the quad tree structure followed by a region merging technique using the Markov Random Field model. The recursive splitting technique starts splitting the Digital Elevation Model into homogeneous regions. However, due to slight height differences in the Digital Elevation Model, region fragmentation can be relatively high. In order to minimize the fragmentation, a region merging technique based on the Markov Random Field model is applied to the previously segmented data. The resulting regions are firstly structured by using the so-called Region Adjacency Graph. Each node of the Region Adjacency Graph represents a region of the Digital Elevation Model segmented and two nodes have connectivity between them if corresponding regions share a common boundary. Next it is assumed that the random variable related to each node, follows the Markov Random Field model. This hypothesis allows the derivation of the posteriori probability distribution function whose solution is obtained by the Maximum a Posteriori estimation. Regions presenting high probability of similarity are merged. Experiments carried out with laser scanning data showed that the methodology allows to separate the objects in the Digital Elevation Model with a low amount of fragmentation.
Data de publicação: 
1-Jan-2007
Citação: 
Boletim de Ciencias Geodesicas, v. 13, n. 1, p. 76-90, 2007.
Duração: 
76-90
Palavras-chaves: 
  • Digital Elevation Model
  • Markov Random Field
  • Quad tree
  • Region segmentation
  • Bayesian analysis
  • data set
  • digital elevation model
  • estimation method
  • image resolution
  • laser method
  • Markov chain
  • probability
  • scanner
  • urban area
Fonte: 
http://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8247/5766
Endereço permanente: 
Direitos de acesso: 
Acesso aberto
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/69496
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.