You are in the accessibility menu

Please use this identifier to cite or link to this item:
The influence of the loop between residues 223-235 in beetle luciferase bioluminescence spectra: A solvent gate for the active site of pH-sensitive luciferases
  • Universidade de Sorocaba (UNISO)
  • Universidade Estadual Paulista (UNESP)
  • Laboratório Nacional de Luz Síncrotron
  • National Institute of Advanced Science and Technology (AIST)
Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors. © 2007 The Authors.
Issue Date: 
Photochemistry and Photobiology, v. 84, n. 1, p. 138-144, 2008.
Time Duration: 
  • luciferase
  • solvent
  • amino acid sequence
  • animal
  • beetle
  • binding site
  • chemical structure
  • chemistry
  • conference paper
  • enzymology
  • genetics
  • metabolism
  • molecular genetics
  • nucleotide sequence
  • pH
  • protein tertiary structure
  • sensitivity and specificity
  • sequence alignment
  • spectrofluorometry
  • Amino Acid Sequence
  • Animals
  • Beetles
  • Binding Sites
  • Conserved Sequence
  • Hydrogen-Ion Concentration
  • Luciferases
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Structure, Tertiary
  • Sensitivity and Specificity
  • Sequence Alignment
  • Solvents
  • Spectrometry, Fluorescence
  • Coleoptera
  • Cratomorphus distinctus
  • Elateridae
  • Lampyridae
  • Photinus pyralis
  • Pyrearinus termitilluminans
Access Rights: 
Acesso restrito
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.