Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/72514
Título: 
Measuring and analyzing color and texture information in anatomical leaf cross sections: An approach using computer vision to aid plant species identification
Autor(es): 
Instituição: 
  • Universidade Federal de Uberlândia (UFU)
  • Universidade Estadual Paulista (UNESP)
  • Instituto de Física de São Carlos
ISSN: 
1916-2804
Financiador: 
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Número do financiamento: 
  • FAPESP: 06/54367-9
  • CNPq: 135251/2006
  • CNPq: 306628/2007-4
  • CNPq: 484474/2007-3
Resumo: 
Currently, studies on leaf anatomy have provided an important source of characters helping taxonomic, systematic, and phylogenetic studies. These studies strongly rely on measurements of characters (such as tissue thickness) and qualitative information (structures description, presence-absence of structures). In this work, we provide a new computational approach that semiautomates the collection of some quantitative data (cuticle, adaxial epidermis, and total leaf thickness) and accesses a new source of information in leaf cross-section images: the texture and the color of leaf tissues. Our aim was to evaluate this information for plant identification purposes. We successfully tested our system identifying eight species from different phylogenetic positions in the angiosperm phylogeny from the neotropical savanna of central Brazil. The proposed system checks the potential of identifying the species for each extracted measure using the Jeffrey-Matusita distance and composes a feature vector with the most important metrics. A linear discriminant analysis with leave-one-out to classify the samples was used. The experiments achieved a 100% success rate in terms of identifying the studied species accessing the above-described parameters, demonstrating that our computational approach can be a helpful tool for anatomical studies, especially ones devoted to plant identification and systematic studies.
Data de publicação: 
1-Jul-2011
Citação: 
Botany, v. 89, n. 7, p. 467-479, 2011.
Duração: 
467-479
Palavras-chaves: 
  • Feature extraction
  • Jeffrey-matusita distance
  • Linear discriminant analysis
  • Plant identification
  • Taxonomy
  • anatomy
  • color
  • computer simulation
  • computer vision
  • cuticle
  • discriminant analysis
  • identification method
  • leaf
  • Neotropic Ecozone
  • phylogenetics
  • phylogeny
  • quantitative analysis
  • savanna
  • taxonomy
  • texture
  • Brazil
  • Magnoliophyta
Fonte: 
http://dx.doi.org/10.1139/b11-038
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/72514
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.