Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/72855
Título: 
Intrusion detection system using optimum-path forest
Autor(es): 
Instituição: 
  • Universidade Estadual Paulista (UNESP)
  • São Paulo State Technology College at Bauru
ISSN: 
0742-1303
Resumo: 
Intrusion detection systems that make use of artificial intelligence techniques in order to improve effectiveness have been actively pursued in the last decade. Neural networks and Support Vector Machines have been also extensively applied to this task. However, their complexity to learn new attacks has become very expensive, making them inviable for a real time retraining. In this research, we introduce a new pattern classifier named Optimum-Path Forest (OPF) to this task, which has demonstrated to be similar to the state-of-the-art pattern recognition techniques, but extremely more efficient for training patterns. Experiments on public datasets showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, as well as allow the algorithm to learn new attacks faster than the other techniques. © 2011 IEEE.
Data de publicação: 
1-Dez-2011
Citação: 
Proceedings - Conference on Local Computer Networks, LCN, p. 183-186.
Duração: 
183-186
Palavras-chaves: 
  • Artificial intelligence techniques
  • Data sets
  • Intrusion Detection Systems
  • Pattern classifier
  • Pattern recognition techniques
  • Real time
  • Training patterns
  • Computer crime
  • Forestry
  • Neural networks
  • Pattern recognition
  • Telecommunication networks
  • Intrusion detection
  • Algorithms
  • Artificial Intelligence
  • Neural Networks
  • Pattern Recognition
  • Telecommunications
Fonte: 
http://dx.doi.org/10.1109/LCN.2011.6115182
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/72855
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.