Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/75207
Título: 
A computer vision approach to quantify leaf anatomical plasticity: A case study on gochnatia polymorpha (less.) cabrera
Autor(es): 
Instituição: 
  • Universidade Federal do Ceará (UFC)
  • Universidade Estadual Paulista (UNESP)
  • Universidade de São Paulo (USP)
ISSN: 
1574-9541
Resumo: 
Inferences about leaf anatomical characteristics had largely been made by manually measuring diverse leaf regions, such as cuticle, epidermis and parenchyma to evaluate differences caused by environmental variables. Here we tested an approach for data acquisition and analysis in ecological quantitative leaf anatomy studies based on computer vision and pattern recognition methods. A case study was conducted on Gochnatia polymorpha (Less.) Cabrera (Asteraceae), a Neotropical savanna tree species that has high phenotypic plasticity. We obtained digital images of cross-sections of its leaves developed under different light conditions (sun vs. shade), different seasons (dry vs. wet) and in different soil types (oxysoil vs. hydromorphic soil), and analyzed several visual attributes, such as color, texture and tissues thickness in a perpendicular plane from microscopic images. The experimental results demonstrated that computational analysis is capable of distinguishing anatomical alterations in microscope images obtained from individuals growing in different environmental conditions. The methods presented here offer an alternative way to determine leaf anatomical differences. © 2013 Elsevier B.V.
Data de publicação: 
1-Mai-2013
Citação: 
Ecological Informatics, v. 15, p. 34-43.
Duração: 
34-43
Palavras-chaves: 
  • Computer vision
  • Gochnatia polymorpha
  • Image analysis
  • Leaf anatomy
  • Phenotypic plasticity
  • anatomy
  • computer vision
  • data acquisition
  • environmental conditions
  • experimental study
  • image analysis
  • leaf
  • light availability
  • microscopy
  • Neotropical Region
  • pattern recognition
  • phenotypic plasticity
  • quantitative analysis
  • savanna
  • soil type
  • species diversity
Fonte: 
http://dx.doi.org/10.1016/j.ecoinf.2013.02.007
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/75207
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.