Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/76632
Título: 
Neural networks models for wear patterns recognition of single-point dresser
Autor(es): 
Instituição: 
Universidade Estadual Paulista (UNESP)
ISSN: 
1474-6670
Resumo: 
Grinding is a workpiece finishing process for advanced products and surfaces. However, the constant friction between workpiece and grinding wheel causes the latter to lose its sharpness, thereby impairing the result of the grinding process. When this occurs, the dressing process is essential to sharpen the worn grains of the grinding wheel. The dressing conditions strongly influence the performance of the grinding operation; hence, monitoring them throughout the process can increase its efficiency. The purpose of this study was to classify the wear condition of a single-point dresser using intelligent systems whose inputs were obtained by digitally processing acoustic emission signals. Two multilayer perceptron (MLP) neural networks were compared for their classification ability, one using the root mean square (RMS) statistics and another the ratio of power (ROP) statistics as input. In this study, it was found that the harmonic content of the acoustic emission signal is influenced by the condition of the dresser, and that the condition of the tool under study can be classified by using the aforementioned statistics to feed a neural network. © IFAC.
Data de publicação: 
24-Set-2013
Citação: 
IFAC Proceedings Volumes (IFAC-PapersOnline), p. 1524-1529.
Duração: 
1524-1529
Palavras-chaves: 
  • Acoustic emission
  • Dresser wear
  • Dressing operation
  • Multilayer perceptron
  • Neural network
  • Acoustic emission signal
  • Classification ability
  • Finishing process
  • Grinding operations
  • Harmonic contents
  • Multi layer perceptron
  • Multilayer perceptron neural networks
  • Neural networks model
  • Acoustic emissions
  • Grinding (machining)
  • Grinding wheels
  • Intelligent systems
  • Manufacture
  • Neural networks
Fonte: 
http://dx.doi.org/10.3182/20130619-3-RU-3018.00222
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/76632
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.