Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/8307
Título: 
Multidimensional polynomial powers of sigmoid (PPS) Wavelet neural networks
Autor(es): 
Instituição: 
Universidade Estadual Paulista (UNESP)
Resumo: 
Wavelet functions have been used as the activation function in feedforward neural networks. An abundance of R&D has been produced on wavelet neural network area. Some successful algorithms and applications in wavelet neural network have been developed and reported in the literature. However, most of the aforementioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality, tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid functions is presented. We described how a multidimensional wavelet neural networks based on these functions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the method proposed, it is studied the exclusive-or (XOR) problem.
Data de publicação: 
1-Jan-2008
Citação: 
Biosignals 2008: Proceedings of The First International Conference on Bio-inspired Systems and Signal Processing, Vol Ii. Setubal: Insticc-inst Syst Technologies Information Control & Communication, p. 261-268, 2008.
Duração: 
261-268
Publicador: 
Insticc-inst Syst Technologies Information Control & Communication
Palavras-chaves: 
  • artificial neural network
  • function approximation
  • polynomial powers of sigmoid (PPS)
  • wavelets functions
  • PPS-Wavelet neural networks
  • activation functions
  • feedforward networks
Endereço permanente: 
http://hdl.handle.net/11449/8307
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/8307
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.