Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/8895
Título: 
An efficient Hopfield network to solve economic dispatch problems with transmission system representation
Autor(es): 
Instituição: 
Universidade Estadual Paulista (UNESP)
ISSN: 
0142-0615
Resumo: 
Economic dispatch (ED) problems have recently been solved by artificial neural network approaches. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. The ability of neural networks to realize some complex non-linear function makes them attractive for system optimization. All ED models solved by neural approaches described in the literature fail to represent the transmission system. Therefore, such procedures may calculate dispatch policies, which do not take into account important active power constraints. Another drawback pointed out in the literature is that some of the neural approaches fail to converge efficiently toward feasible equilibrium points. A modified Hopfield approach designed to solve ED problems with transmission system representation is presented in this paper. The transmission system is represented through linear load flow equations and constraints on active power flows. The internal parameters of such modified Hopfield networks are computed using the valid-subspace technique. These parameters guarantee the network convergence to feasible equilibrium points, which represent the solution for the ED problem. Simulation results and a sensitivity analysis involving IEEE 14-bus test system are presented to illustrate efficiency of the proposed approach. (C) 2004 Elsevier Ltd. All rights reserved.
Data de publicação: 
1-Nov-2004
Citação: 
International Journal of Electrical Power & Energy Systems. Oxford: Elsevier B.V., v. 26, n. 9, p. 733-738, 2004.
Duração: 
733-738
Publicador: 
Elsevier B.V.
Palavras-chaves: 
  • economic dispatch
  • artificial neural networks
  • Hopfield model
Fonte: 
http://dx.doi.org/10.1016/j.ijepes.2004.05.007
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/8895
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.