Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/9889
Título: 
Structural integrity identification based on smart materials and neural networks
Autor(es): 
Instituição: 
Universidade Estadual Paulista (UNESP)
ISSN: 
0277-786X
Resumo: 
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically>30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.
Data de publicação: 
1-Jan-2000
Citação: 
Imac-xviii: A Conference on Structural Dynamics, Vols 1 and 2, Proceedings. Bethel: Soc Experimental Mechanics Inc., v. 4062, p. 510-515, 2000.
Duração: 
510-515
Publicador: 
Soc Experimental Mechanics Inc
Fonte: 
http://www.thieme-connect.com/ejournals/abstract/10.1055/s-2006-949763
Endereço permanente: 
http://hdl.handle.net/11449/9889
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/9889
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.