You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/unesp/360643
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLauschke, Andreas-
dc.date2008-09-09T00:24:18Z-
dc.date2008-09-09T00:24:18Z-
dc.date2008-
dc.date2008-09-09T00:24:18Z-
dc.date2008-09-09T00:16:26-
dc.date.accessioned2016-10-26T17:47:37Z-
dc.date.available2016-10-26T17:47:37Z-
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/5181-
dc.identifier.urihttp://acervodigital.unesp.br/handle/unesp/360643-
dc.descriptionContinued fractions provide a very effective toolset for approximating functions. Usually the continued fraction expansion of a function approximates the function better than its Taylor or Fourier series. This Demonstration shows the high quality of a continued fraction expansion to approximate the Riemann ζ function-
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática-
dc.languageeng-
dc.publisherWolfram-
dc.relationApproximatingTheRiemannZetaFunctionWithContinuedFractions.nbp-
dc.rightsDemonstration freeware using Mathematica Player-
dc.sourcehttp://demonstrations.wolfram.com/ApproximatingTheRiemannZetaFunctionWithContinuedFractions/-
dc.subjectApproximation Methods-
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise Funcional-
dc.titleApproximating the Riemann Zeta Function with Continued Fractions-
dc.typeoutro-
dc.description3This demonstration needs the "MathematicaPlayer.exe" to run. Found in http://objetoseducacionais2.mec.gov.br/handle/mec/4737-
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.