You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/unesp/360734
Full metadata record
DC FieldValueLanguage
dc.contributor.authorStephen, Wolfram-
dc.date2008-09-11T00:30:32Z-
dc.date2008-09-11T00:30:32Z-
dc.date2008-
dc.date2008-09-11T00:30:32Z-
dc.date2008-09-10T07:47:44-
dc.date.accessioned2016-10-26T17:47:49Z-
dc.date.available2016-10-26T17:47:49Z-
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/5222-
dc.identifier.urihttp://acervodigital.unesp.br/handle/unesp/360734-
dc.descriptionMathematical Logic-
dc.descriptionThe Ackermann function is a classic example of a function that is not "primitive recursive"-its evaluation cannot be "unwound" into simple loops. See how instances of the Ackermann function get evaluated by calling on others. The Ackermann function grows very rapidly. As its first argument increases, it effectively goes from addition, to multiplication, powers, power towers, etc-
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática-
dc.languageeng-
dc.relation86RecursionInTheAckermannFunction.nbp-
dc.rightsDemonstration freeware using Mathematica Player-
dc.sourcehttp://demonstrations.wolfram.com/RecursionInTheAckermannFunction/-
dc.subjectMathematical logic-
dc.subjectComputer science-
dc.subjectFoundations of mathematics-
dc.subjectLógica matemática-
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Matemática Aplicada-
dc.titleRecursion in the ackermann function-
dc.typeoutro-
dc.description2Show how to use the Recursion in the Ackermann Function-
dc.description3This demonstration needs the "MathematicaPlayer.exe" to run. Found in http://objetoseducacionais2.mec.gov.br/handle/mec/4737-
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.