You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/unesp/360892
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZeleny, Enrique-
dc.date2008-
dc.date2008-09-15T02:26:29Z-
dc.date2008-09-15T02:26:29Z-
dc.date2008-09-15T02:26:29Z-
dc.date2008-09-13T14:00:02-
dc.date.accessioned2016-10-26T17:48:09Z-
dc.date.available2016-10-26T17:48:09Z-
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/5353-
dc.identifier.urihttp://acervodigital.unesp.br/handle/unesp/360892-
dc.descriptionNumber Theory-
dc.descriptionConsider the function f(n)=n/2 if n is even or f(n)=3n+1 if n is odd The Collatz problem consists in repeatedly evaluating the function for every positive integer n; it always seems to end in 1, but this may not always be true. This shows a plot of paths for the Collatz problem; each path is plotted along the y axis. Notice that the plot reveals a pattern of diagonal lines that pass though the origin and horizontal lines that show that certain values are much more likely than others. The reason for these diffuse patterns made by preferred values is unclear-
dc.descriptionComponente Curricular::Ensino Médio::Matemática-
dc.languageeng-
dc.relation124PreferredValuesOfCollatzPaths.nbp-
dc.rightsDemonstration freeware using Mathematica Player-
dc.sourcehttp://demonstrations.wolfram.com/PreferredValuesOfCollatzPaths/-
dc.subjectNumber Theory-
dc.subjectComputational Universe-
dc.subjectUnsolved Problems-
dc.subjectEducação Básica::Ensino Médio::Matemática::Álgebra-
dc.titlePreferred values of collatz paths-
dc.typeoutro-
dc.description2Show preferred values of collatz paths-
dc.description3This demonstration needs the "MathematicaPlayer.exe" to run. Found in http://objetoseducacionais2.mec.gov.br/handle/mec/4737-
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.