You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/unesp/360896
Title: 
Tightly packed squares
Author(s): 
Pegg Jr, Ed
Language: 
eng
Description: 
  • none
  • What is the smallest rectangle that can hold squares of sizes 1 to n? This problem is unsolved for more than 27 squares. The excess area in these packings is 0,1,1,5,5, 8,14,6,15,20, 7,17,17,20,25, 16,9,30,21,20, 33,27,28,28,22, 29,26. How the excess is bounded for higher n is an unsolved problem, but the bounds seem to be n/2 and 2n
  • Componente Curricular::Ensino Fundamental::Séries Finais::Matemática
Issue Date: 
  • 2008
  • 15-Sep-2008
  • 15-Sep-2008
  • 15-Sep-2008
  • 13-Sep-2008
Keywords: 
  • Area
  • Art
  • Discrete Mathematics
  • Educação Básica::Ensino Fundamental Final::Matemática::Espaço e forma
Notes: 
Show tightly packed squares
Credits: 
This demonstration needs the "MathematicaPlayer.exe" to run. Found in http://objetoseducacionais2.mec.gov.br/handle/mec/4737
Source: 
http://objetoseducacionais2.mec.gov.br/handle/mec/5360
URI: 
http://acervodigital.unesp.br/handle/unesp/360896
Rights: 
Demonstration freeware using Mathematica Player
Type: 
outro
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.