You are in the accessibility menu

Please use this identifier to cite or link to this item: `http://acervodigital.unesp.br/handle/unesp/360896`
DC FieldValueLanguage
dc.contributor.authorPegg Jr, Ed-
dc.date2008-
dc.date2008-09-15T02:29:05Z-
dc.date2008-09-15T02:29:05Z-
dc.date2008-09-15T02:29:05Z-
dc.date2008-09-13T16:02:33-
dc.date.accessioned2016-10-26T17:48:09Z-
dc.date.available2016-10-26T17:48:09Z-
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/5360-
dc.identifier.urihttp://acervodigital.unesp.br/handle/unesp/360896-
dc.descriptionnone-
dc.descriptionWhat is the smallest rectangle that can hold squares of sizes 1 to n? This problem is unsolved for more than 27 squares. The excess area in these packings is 0,1,1,5,5, 8,14,6,15,20, 7,17,17,20,25, 16,9,30,21,20, 33,27,28,28,22, 29,26. How the excess is bounded for higher n is an unsolved problem, but the bounds seem to be n/2 and 2n-
dc.descriptionComponente Curricular::Ensino Fundamental::Séries Finais::Matemática-
dc.languageeng-
dc.relation130TightlyPackedSquares.nbp-
dc.rightsDemonstration freeware using Mathematica Player-
dc.sourcehttp://demonstrations.wolfram.com/TightlyPackedSquares/-
dc.subjectArea-
dc.subjectArt-
dc.subjectDiscrete Mathematics-
dc.subjectEducação Básica::Ensino Fundamental Final::Matemática::Espaço e forma-
dc.titleTightly packed squares-
dc.typeoutro-
dc.description2Show tightly packed squares-
dc.description3This demonstration needs the "MathematicaPlayer.exe" to run. Found in http://objetoseducacionais2.mec.gov.br/handle/mec/4737-
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.