You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/unesp/360923
Title: 
Common methods of estimating the area under a curve
Author(s): 
Liao, Scott
Language: 
eng
Description: 
  • Calculus,Integrals
  • Several methods are used to estimate the net area between the x axis and a given curve over a chosen interval; all but the trapezoidal method are Riemann sums. In this Demonstration the lower limit is 0 and the upper limit is a. The area is the same number as the definite integral of the function f(x)
  • Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
Issue Date: 
  • 15-Sep-2008
  • 15-Sep-2008
  • 2008
  • 15-Sep-2008
  • 14-Sep-2008
Publisher: 
Wolfram Demonstration Project
Keywords: 
  • Integrals
  • area under a curve
  • estimat
  • Educação Superior::Ciências Exatas e da Terra::Matemática::Análise Numérica
Notes: 
There are many different methods of estimating the integral; some offer more accurate estimates than others for certain functions. If the quadrilaterals are all of equal width, then as the number of quadrilaterals tends to infinity, the estimated area tends to the actual area
Credits: 
This demonstration needs the "MathematicaPlayer.exe" to run. Found in http://objetoseducacionais2.mec.gov.br/handle/mec/4737
Source: 
http://objetoseducacionais2.mec.gov.br/handle/mec/5387
URI: 
http://acervodigital.unesp.br/handle/unesp/360923
Rights: 
Demonstration freeware using Mathematica Player
Type: 
outro
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.