You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/unesp/370240
Title: 
An IMO triangle problem
Author(s): 
Pavlyk, Oleksandr
Language: 
eng
Description: 
  • The International Mathematical Olympiad (IMO) of 2006 was held in Slovenia. This Demonstration shows that P moves along the brown circle with center at the intersection of the circumcircle and the bisector of the angle A. The point P is constrained to move so that angle PBA + angle PCA = angel PBC + angle PCB. This is based on a problem presented at IMO as follows. Let ABC be a triangle with incentre I. A point P in the interior of the triangle satisfies angle PBA + angle PCA = angel PBC + angle PCB. Show that AP≥AI, and that equality holds if and only if P=I
  • Ensino Médio::Matemática
Issue Date: 
  • 10-May-2010
  • 2010
  • 19-Mar-2013
  • 19-Mar-2013
  • 19-Mar-2013
Publisher: 
Wolfram demonstrations project
Keywords: 
  • Educação Básica::Ensino Médio::Matemática::Geometria
  • Geometria
Notes: 
Mostrar as relações entre os ângulos de um triângulo, que tem inscrita uma circunferência em seu interior, através das mudanças de posições do ponto P
Credits: 
This demonstration needs the "MathematicaPlayer.exe" to run. Find it in http://objetoseducacionais2.mec.gov.br/handle/mec/4737
Source: 
http://objetoseducacionais2.mec.gov.br/handle/mec/22929
URI: 
http://acervodigital.unesp.br/handle/unesp/370240
Rights: 
Demonstration freeware using MathematicaPlayer
Type: 
outro
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.