You are in the accessibility menu

Please use this identifier to cite or link to this item: `http://acervodigital.unesp.br/handle/unesp/370241`
DC FieldValueLanguage
dc.contributor.authorIrish, Cassandra-
dc.date2013-03-19T17:30:37Z-
dc.date2013-03-19T17:30:37Z-
dc.date2013-03-19T17:30:37Z-
dc.date2010-
dc.date2010-05-10T21:01:46Z-
dc.date.accessioned2016-10-26T18:07:17Z-
dc.date.available2016-10-26T18:07:17Z-
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/22930-
dc.identifier.urihttp://acervodigital.unesp.br/handle/unesp/370241-
dc.descriptionEnsino Médio::Matemática-
dc.descriptionYou can use similar triangles to find the height of a building. The shadows of a building and a person standing vertically create two black triangles. The corresponding sides are proportional. Therefore, you can find the height of the building by measuring the lengths of the two shadows and the height of the person-
dc.languageeng-
dc.publisherWolfram demonstrations project-
dc.relationHowTallIsThatBuilding.nbp-
dc.rightsDemonstration freeware using MathematicaPlayer-
dc.sourcehttp://demonstrations.wolfram.com/HowTallIsThatBuilding/-
dc.subjectEducação Básica::Ensino Médio::Matemática::Geometria-
dc.subjectGeometria-
dc.titleHow tall is that building?-
dc.typeoutro-
dc.description2Usar semelhança de triângulos para encontrar a altura de um prédio-
dc.description3This demonstration needs the "MathematicaPlayer.exe" to run. Find it in http://objetoseducacionais2.mec.gov.br/handle/mec/4737-
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.