You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/unesp/370761
Title: 
Pick's theorem
Author(s): 
Pegg Jr., Ed
Language: 
eng
Description: 
  • Ensino Médio::Matemática
  • Suppose that a polygon has its corners at the points of a geoboard. (You can drag the corners.) Count the number of boundary points B and interior points I. As long as the polygon does not cross over itself, Pick's theorem gives the area as A = I + B/2 - 1. In words, the area is one less than the number of interior points plus half the number of border points
Issue Date: 
  • 2010
  • 7-Jul-2010
  • 20-Mar-2013
  • 20-Mar-2013
  • 20-Mar-2013
Publisher: 
Wolfram demonstrations project
Keywords: 
  • Educação Básica::Ensino Médio::Matemática::Geometria
  • Geometria
Notes: 
Encontrar a área da figura obtida, que tem vértices em pontos do plano cartesiano, a partir da fórmula A = I + B/2 - 1, e que B é o número de pontos da borda e I é o número de pontos interiores
Credits: 
This demonstration needs the "MathematicaPlayer.exe" to run. Find it in http://objetoseducacionais2.mec.gov.br/handle/mec/4737
Source: 
http://objetoseducacionais2.mec.gov.br/handle/mec/22963
URI: 
http://acervodigital.unesp.br/handle/unesp/370761
Rights: 
Demonstration freeware using MathematicaPlayer
Type: 
outro
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.