You are in the accessibility menu

Please use this identifier to cite or link to this item: `http://acervodigital.unesp.br/handle/unesp/370761`
DC FieldValueLanguage
dc.contributor.authorPegg Jr., Ed-
dc.date2010-
dc.date2010-07-07T13:51:49Z-
dc.date2013-03-20T12:45:05Z-
dc.date2013-03-20T12:45:05Z-
dc.date2013-03-20T12:45:05Z-
dc.date.accessioned2016-10-26T18:08:19Z-
dc.date.available2016-10-26T18:08:19Z-
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/22963-
dc.identifier.urihttp://acervodigital.unesp.br/handle/unesp/370761-
dc.descriptionEnsino Médio::Matemática-
dc.descriptionSuppose that a polygon has its corners at the points of a geoboard. (You can drag the corners.) Count the number of boundary points B and interior points I. As long as the polygon does not cross over itself, Pick's theorem gives the area as A = I + B/2 - 1. In words, the area is one less than the number of interior points plus half the number of border points-
dc.languageeng-
dc.publisherWolfram demonstrations project-
dc.relationPicksTheorem.nbp-
dc.rightsDemonstration freeware using MathematicaPlayer-
dc.sourcehttp://demonstrations.wolfram.com/PicksTheorem/-
dc.subjectEducação Básica::Ensino Médio::Matemática::Geometria-
dc.subjectGeometria-
dc.titlePick's theorem-
dc.typeoutro-
dc.description2Encontrar a área da figura obtida, que tem vértices em pontos do plano cartesiano, a partir da fórmula A = I + B/2 - 1, e que B é o número de pontos da borda e I é o número de pontos interiores-
dc.description3This demonstration needs the "MathematicaPlayer.exe" to run. Find it in http://objetoseducacionais2.mec.gov.br/handle/mec/4737-
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.