You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/unesp/370913
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFalloon, Peter-
dc.date2010-07-23T17:10:16Z-
dc.date2010-
dc.date2013-04-11T14:31:40Z-
dc.date2013-04-11T14:31:40Z-
dc.date2013-04-11T14:31:40Z-
dc.date.accessioned2016-10-26T18:08:36Z-
dc.date.available2016-10-26T18:08:36Z-
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/24119-
dc.identifier.urihttp://acervodigital.unesp.br/handle/unesp/370913-
dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática-
dc.descriptionEnsino Médio::Matemática-
dc.descriptionThis Demonstration shows the superellipse curve as a function of its parameters a, b, and r. The superellipse has parametric equations x = a cos^(2/r)(t), y = b sin^(2/r)(t), for 0 ≤t≤ π/2 in the first quadrant (x ≥ 0, y ≥ 0); multiplying by +-1 gives the equations for the curve in the other quadrants. The special case r=2 gives an ellipse; the further restriction a=b gives a circle-
dc.languageeng-
dc.publisherWolfram demonstrations project-
dc.relationVisualizingSuperellipses.nbp-
dc.rightsDemonstration freeware using MathematicaPlayer-
dc.sourcehttp://demonstrations.wolfram.com/VisualizingSuperellipses/-
dc.subjectGeometria-
dc.subjectEducação Básica::Ensino Médio::Matemática::Geometria-
dc.titleVisualizing superellipses-
dc.typeoutro-
dc.description2Este objeto educacional mostra uma curav elíptca em função dos parâmetros a, b e r e que, dependendo destes, obtém-se elipses ou circunferências-
dc.description3This demonstration needs the "MathematicaPlayer.exe" to run. Find it in http://objetoseducacionais2.mec.gov.br/handle/mec/4737-
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.