You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/unesp/370917
Title: 
The complex unit circle
Author(s): 
Trott, Michael
Language: 
eng
Description: 
  • Educação Superior::Ciências Exatas e da Terra::Matemática
  • The points {z,w} belong to C² of the complex unit circle z² + w² =1 can be parametrized: z = x + iy = cos(α)cosh(β) - isin(α)sinh(β), w = u + iv = sin(α)cosh(β) + icos(α)sinh(β). This Demonstration shows 3D projections of the surface z² + w² = 1 in x, y, u, v space. The angles φ_(a,b) denote the rotation angles inside the a, b hyperplane. In the limit, as β -> 0, the complex unit circle becomes a circle in the x, u plane
Issue Date: 
  • 23-Jul-2010
  • 2010
  • 18-Mar-2013
  • 18-Mar-2013
  • 18-Mar-2013
Publisher: 
Wolfram demonstrations project
Keywords: 
  • Educação Superior::Ciências Exatas e da Terra::Matemática::Análise Complexa
  • Geometria
Notes: 
Este objeto educacional tem por objetivo mostrar projeções 3D da superfície z² + w² = 1 no espaço x, y, u, v, em que z = x + iy e w = u + iv, x,y, u e v reais
Credits: 
This demonstration needs the "MathematicaPlayer.exe" to run. Find it in http://objetoseducacionais2.mec.gov.br/handle/mec/4737
Source: 
http://objetoseducacionais2.mec.gov.br/handle/mec/22922
URI: 
http://acervodigital.unesp.br/handle/unesp/370917
Rights: 
Demonstration freeware using MathematicaPlayer
Type: 
outro
Appears in Collections:MEC - Objetos Educacionais (BIOE) - OE

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.