Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/10403
- Title:
- Bifurcation of limit cycles from an n-dimensional linear center inside a class of piecewise linear differential systems
- Univ Autonoma Barcelona
- Universidade Estadual Paulista (UNESP)
- 0362-546X
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- MICIIN
- AGAUR
- ICREA Academia
- FAPESP: 07/07957-8
- FAPESP: 07/08707-5
- MICIIN: MTM2008-03437
- AGAUR: 2009SGR-410
- Let n be an even integer. We study the bifurcation of limit cycles from the periodic orbits of the n-dimensional linear center given by the differential system<(x)over dot>(1) = -x(2), <(x)over dot>(2) = x(1), ... , <(x)over dot>(n-1) = -x(n), <(x)over dot>(n) = x(n-1),perturbed inside a class of piecewise linear differential systems. Our main result shows that at most (4n - 6)(n/2-1) limit cycles can bifurcate up to first-order expansion of the displacement function with respect to a small parameter. For proving this result we use the averaging theory in a form where the differentiability of the system is not needed. (C) 2011 Elsevier Ltd. All rights reserved.
- 1-Jan-2012
- Nonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 75, n. 1, p. 143-152, 2012.
- 143-152
- Pergamon-Elsevier B.V. Ltd
- Limit cycles
- Bifurcation
- Control systems
- Averaging method
- Piecewise linear differential systems
- Center
- http://dx.doi.org/10.1016/j.na.2011.08.013
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/10403
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.