Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/110081
- Title:
- Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics
- Universidade Estadual Paulista (UNESP)
- 1517-8382
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Graduate Program on Microbiologia Agropecuaria from UNESP-FCAV
- The discovery of secondary metabolites produced by microorganisms (e.g., penicillin in 1928) and the beginning of their industrial application (1940) opened new doors to what has been the main medication source for the treatment of infectious diseases and tumors. In fact, approximately 80 years after the discovery of the first antibiotic compound, and despite all of the warnings about the failure of the goose that laid the golden egg, the potential of this wealth is still inexorable: simply adjust the focus from micro to nano, that means changing the look from microorganisms to nanograms of DNA. Then, the search for new drugs, driven by genetic engineering combined with metagenomic strategies, shows us a way to bypass the barriers imposed by methodologies limited to isolation and culturing. However, we are far from solving the problem of supplying new molecules that are effective against the plasticity of multi- or pan-drug-resistant pathogens. Although the first advances in genetic engineering date back to 1990, there is still a lack of high-throughput methods to speed up the screening of new genes and design new molecules by recombination of pathways. In addition, it is necessary an increase in the variety of heterologous hosts and improvements throughout the full drug discovery pipeline. Among numerous studies focused on this subject, those on polyketide antibiotics stand out for the large technical-scientific efforts that established novel solutions for the transfer/engineering of major metabolic pathways using transposons and other episomes, overcoming one of the main methodological constraints for the heterologous expression of major pathways. In silico prediction analysis of three-dimensional enzymatic structures and advances in sequencing technologies have expanded access to the metabolic potential of microorganisms.
- 1-Dec-2013
- Brazilian Journal of Microbiology. Sociedade Brasileira de Microbiologia, v. 44, n. 4, p. 1007-1034, 2013.
- 1007-1034
- Sociedade Brasileira de Microbiologia
- environmental samples
- pharmacology
- PKSs
- new drugs
- http://dx.doi.org/10.1590/S1517-83822013000400002
- Acesso aberto
- outro
- http://repositorio.unesp.br/handle/11449/110081
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.