You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/1113
Title: 
Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case
Author(s): 
Institution: 
  • Univ Carlos III Madrid
  • Universidade Estadual Paulista (UNESP)
ISSN: 
0168-9274
Sponsorship: 
  • Direccion General de Investigacion, Ministerio de Ciência e Innovacion of Spain
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Fundação para o Desenvolvimento da UNESP (FUNDUNESP)
Sponsorship Process Number: 
Direccion General de Investigacion, Ministerio de Ciência e Innovacion of Spain: MTM2009-12740-C03-01
Abstract: 
We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product< p, q > (lambda,c.j) = integral(b)(a) p(x)q(x)mu(x) + lambda p((j))(c)q((j))(c),where mu is a positive Borel measure, lambda >= 0, j is an element of Z(+), and c is not an element of (a, b). We prove that these zeros are monotonic function of the parameter A and establish their asymptotics when either lambda converges to zero or to infinity. The precise location of the extreme zeros is also analyzed. (c) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
Issue Date: 
1-Nov-2012
Citation: 
Applied Numerical Mathematics. Amsterdam: Elsevier B.V., v. 62, n. 11, p. 1663-1671, 2012.
Time Duration: 
1663-1671
Publisher: 
Elsevier B.V.
Keywords: 
  • Orthogonal polynomials
  • Sobolev type inner product
  • Zeros
  • Monotonicity
  • Asymptotic behavior
Source: 
http://dx.doi.org/10.1016/j.apnum.2012.05.006
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/1113
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.