Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/111584
- Title:
- Existence of solutions for a class of degenerate quasilinear elliptic equation in R-N with vanishing potentials
- Universidade Estadual Paulista (UNESP)
- Universidade Federal de Juiz de Fora (UFJF)
- Centro Federal de Educação Tecnológica (CEFET)
- 1687-2770
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- FAPEMIG: CEX-APQ 00025-11
- We establish the existence of positive solution for the following class of degenerate quasilinear elliptic problem(P) {-Lu-ap + V(x)vertical bar x vertical bar(-ap*)vertical bar u vertical bar(p-2)u = f(u) in R-N, u > 0 in R-N; u is an element of D-a(1,p) (R-N)where -Lu-ap = -div(vertical bar x vertical bar(-ap)vertical bar del vertical bar(p-2)del u), 1 < N, -infinity < a < N-p/p, a <= e <= a + 1, d = 1 + a - e, and p* = p* (a, e) = Np/N-dp denote the Hardy-Sobolev's critical exponent, V is a bounded nonnegative vanishing potential and f has a subcritical growth at infinity. The technique used here is a truncation argument together with the variational approach.
- 17-Apr-2013
- Boundary Value Problems. Cham: Springer International Publishing Ag, 16 p., 2013.
- 16
- Springer
- http://dx.doi.org/10.1186/1687-2770-2013-92
- Acesso aberto
- outro
- http://repositorio.unesp.br/handle/11449/111584
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.