You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/112565
Title: 
Interface of dentine to root canal sealers
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Univ Malta
ISSN: 
0300-5712
Sponsorship: 
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Faculty of Dental Surgery, University of Malta
  • University of Malta Research Grant committee
  • ERDF (Malta)
Sponsorship Process Number: 
  • FAPESP: 10/10769-1
  • FAPESP: 10/17976-2
  • ERDF (Malta)012
Abstract: 
Objective: Root canal sealers can interact physically or chemically with dentine. The aim of this study was to characterize the dentine-root canal sealer interface of experimental sealers based on Portland cement using an epoxy-based vehicle in comparison to an epoxy resin sealer, AH Plus.Methods: Root canals were biomechanically prepared and filled with any one of the four experimental epoxy sealers containing Portland cement with micro-and nano-particles of either zirconium oxide or niobium oxide radiopacifers, or AH Plus. The dentine-sealer's interfaces were assessed by coronal penetration of fluorescent microspheres, the penetration of sealers labelled with Rhodamine B inside the dentine tubules (following obturation with gutta-percha and sealers using System B technique) assessed by confocal laser scanning microscopy, and the chemical characterization of dentine-sealers interface by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) line scans.Results: No penetration of fluorescent microspheres at the root-dentine to sealer interface was recorded for all test materials. Sealers presented greater ability to penetrate within the dentinal tubules at the coronal and mid-root thirds. The experimental sealers containing radiopacifier nano-particles exhibited a more homogeneous microstructure along the whole length of the canal. EDS-line scans results showed a migration of silicon and niobium into dentine. Peak overlap between zirconium and the phosphorous compromised the identification of the migration of the zirconium oxide into dentine.Conclusions: All five sealers promoted coronal sealing. The experimental sealers exhibited promising characteristics and were comparable to AH Plus sealer. Elemental migration of the experimental sealers suggests material interaction with dentine which was not displayed by AH Plus. (C) 2013 Elsevier Ltd. All rights reserved.
Issue Date: 
1-Mar-2014
Citation: 
Journal Of Dentistry. Oxford: Elsevier Sci Ltd, v. 42, n. 3, p. 336-350, 2014.
Time Duration: 
336-350
Publisher: 
Elsevier B.V.
Keywords: 
  • Root canal obturation
  • Characterization
  • Root dentine to sealer interface
  • Fluorescent microspheres
  • Rhodamine B
  • Portland cement
  • AH Plus
Source: 
http://dx.doi.org/10.1016/j.jdent.2013.11.013
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/112565
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.