Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/113165
- Title:
- Measuring Quantum Capacitance in Energetically Addressable Molecular Layers
- Universidade Estadual Paulista (UNESP)
- Univ Oxford
- 0003-2700
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- UNESP
- The Fermi level or electrochemical signature of a molecular film containing accessible orbital states is ultimately governed by two measurable series energetic components, an energy loss term related to the charging of appropriately addressable molecular orbitals (resonant or charge transfer resistance), and an energy storage or electrochemical capacitance component. The latter conservative term is further divisible into two series contributions, one being a classic electrostatic term and the other arising from the involvement and charging of quantized molecular orbital states. These can be tuned in and out of resonance with underlying electrode states with an efficiency that governs electron transfer kinetics and an energetic spread dependent on solution dielectric. These features are experimentally resolved by an impedance derived capacitance analysis, a methodology which ultimately enables a convenient spectroscopic mapping of electron transfer efficacy, and of density of states within molecular films.
- 4-Feb-2014
- Analytical Chemistry. Washington: Amer Chemical Soc, v. 86, n. 3, p. 1337-1341, 2014.
- 1337-1341
- Amer Chemical Soc
- http://dx.doi.org/10.1021/ac403135b
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/113165
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.