You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/113412
Title: 
Multiplicity of solutions for a biharmonic equation with subcritical or critical growth
Author(s): 
Institution: 
  • Fed Univ Para
  • Universidade Estadual Paulista (UNESP)
ISSN: 
1370-1444
Sponsorship: 
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Sponsorship Process Number: 
CNPq: 300705/2008-5
Abstract: 
We consider the fourth-order problem{epsilon(4)Delta(2)u + V(x)u = f(u) + gamma vertical bar u vertical bar(2)**-(2)u in R-N u is an element of H-2(R-N),where epsilon > 0, N >= 5, V is a positive continuous potential, f is a function with subcritical growth and gamma is an element of {0,1}. We relate the number of solutions with the topology of the set where V attain its minimum values. We consider the subcritical case gamma = 0 and the critical case gamma = 1. In the proofs we apply Ljusternik-Schnirelmann theory.
Issue Date: 
1-Jul-2013
Citation: 
Bulletin of the Belgian Mathematical Society-simon Stevin. Brussels: Belgian Mathematical Soc Triomphe, v. 20, n. 3, p. 519-534, 2013.
Time Duration: 
519-534
Publisher: 
Belgian Mathematical Soc Triomphe
Keywords: 
  • variational methods
  • biharmonic equations
  • nontrivial solutions
Source: 
http://projecteuclid.org/euclid.bbms/1378314513
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/113412
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.