You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/113513
Title: 
Photo-Induced Conductivity of Heterojunction GaAs/Rare-Earth Doped SnO2
Author(s): 
Institution: 
Universidade Estadual Paulista (UNESP)
ISSN: 
1516-1439
Sponsorship: 
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Abstract: 
Rare-earth doped (Eu3+ or Ce3+) thin layers of tin dioxide (SnO2) are deposited by the sol-gel-dip-coating technique, along with gallium arsenide (GaAs) films, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, because it may combine the emission from the rare-earth-doped transparent oxide, with a high mobility semiconductor. Trivalent rare-earth-doped SnO2 presents very efficient emission in a wide wavelength range, including red (in the case of Eu3+) or blue (Ce3+). The advantage of this structure is the possibility of separation of the rare-earth emission centers, from the electron scattering, leading to an indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films. Monochromatic light excitation shows up the role of the most external layer, which may act as a shield (top GaAs), or an ultraviolet light absorber sink (top RE-doped SnO2). The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels in the semiconductors junction with two-dimensional electron gas (2DEG) behavior, which are evaluated by excitation with distinct monochromatic light sources, where the samples are deposited by varying the order of layer deposition.
Issue Date: 
1-Jul-2013
Citation: 
Materials Research-ibero-american Journal Of Materials. Sao Carlos: Univ Fed Sao Carlos, Dept Engenharia Materials, v. 16, n. 4, p. 831-838, 2013.
Time Duration: 
831-838
Publisher: 
Univ Fed Sao Carlos, Dept Engenharia Materials
Keywords: 
  • tin dioxide
  • gallium arsenide
  • heterojunction
  • interface
  • electrical conductivity
Source: 
http://dx.doi.org/10.1590/S1516-14392013005000060
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/113513
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.