Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/116243
- Title:
- Positive Solution for a Class of Degenerate Quasilinear Elliptic Equations in R-N
- Universidade Estadual Paulista (UNESP)
- Univ Fed Juiz de Fora
- Ctr Fed Educ Tecnol Minas Gerais
- 1424-9286
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
- Centro Federal de Educacao Tecnologica de Minas Gerais/Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- FAPEMIG: CEX-APQ 00025-11
- We establish a result on the existence of a positive solution for the following class of degenerate quasilinear elliptic problems:(P) {-Delta(up)u + V(x)vertical bar x vertical bar-(ap+)vertical bar u vertical bar(p-2)u = K(x)f(x, u), in R-N, u > 0, in R-N, u epsilon D-u(1,p)(R-N),where -Delta(ap)u = -div(vertical bar x vertical bar(-ap)vertical bar del u vertical bar(p-2)del u), 1 < p < N, -infinity < a < N-p/p, a <= e <= a + 1, d = 1 + a - e, and p* := p*(a, e) = Np/N-dp denotes the Hardy-Sobolev's , and denotes the Hardy-Sobolev's critical exponent, V and K are bounded nonnegative continuous potentials, K vanishes at infinity, and f has a subcritical growth at infinity. The technique used here is the variational approach.
- 1-Dec-2014
- Milan Journal Of Mathematics. Basel: Springer Basel Ag, v. 82, n. 2, p. 213-231, 2014.
- 213-231
- Springer
- Positive solutions
- Schrodinger operator
- Variational methods for second-order elliptic equations
- Degenerate elliptic equations
- http://dx.doi.org/10.1007/s00032-014-0224-8
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/116243
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.