You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/116243
Title: 
Positive Solution for a Class of Degenerate Quasilinear Elliptic Equations in R-N
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Univ Fed Juiz de Fora
  • Ctr Fed Educ Tecnol Minas Gerais
ISSN: 
1424-9286
Sponsorship: 
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
  • Centro Federal de Educacao Tecnologica de Minas Gerais/Brazil
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Sponsorship Process Number: 
FAPEMIG: CEX-APQ 00025-11
Abstract: 
We establish a result on the existence of a positive solution for the following class of degenerate quasilinear elliptic problems:(P) {-Delta(up)u + V(x)vertical bar x vertical bar-(ap+)vertical bar u vertical bar(p-2)u = K(x)f(x, u), in R-N, u > 0, in R-N, u epsilon D-u(1,p)(R-N),where -Delta(ap)u = -div(vertical bar x vertical bar(-ap)vertical bar del u vertical bar(p-2)del u), 1 < p < N, -infinity < a < N-p/p, a <= e <= a + 1, d = 1 + a - e, and p* := p*(a, e) = Np/N-dp denotes the Hardy-Sobolev's , and denotes the Hardy-Sobolev's critical exponent, V and K are bounded nonnegative continuous potentials, K vanishes at infinity, and f has a subcritical growth at infinity. The technique used here is the variational approach.
Issue Date: 
1-Dec-2014
Citation: 
Milan Journal Of Mathematics. Basel: Springer Basel Ag, v. 82, n. 2, p. 213-231, 2014.
Time Duration: 
213-231
Publisher: 
Springer
Keywords: 
  • Positive solutions
  • Schrodinger operator
  • Variational methods for second-order elliptic equations
  • Degenerate elliptic equations
Source: 
http://dx.doi.org/10.1007/s00032-014-0224-8
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/116243
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.