Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/116350
- Title:
- Functions and vector fields on C(CPn)-singular manifolds
- Universidade Estadual Paulista (UNESP)
- 0041-5995
- Let M2n+1 be a C(CPn) -singular manifold. We study functions and vector fields with isolated singularities on M2n+1. A C(CPn) -singular manifold is obtained from a smooth manifold M2n+1 with boundary in the form of a disjoint union of complex projective spaces CPn boolean OR CPn boolean OR ... boolean OR CPn with subsequent capture of a cone over each component of the boundary. Let M2n+1 be a compact C(CPn) -singular manifold with k singular points. The Euler characteristic of M2n+1 is equal to chi(M2n+1) = k(1 - n)/2. Let M2n+1 be a C(CPn)-singular manifold with singular points m(1), ..., m(k). Suppose that, on M2n+1, there exists an almost smooth vector field V (x) with finite number of zeros m(1), ..., m(k), x(1), ..., x(1). Then chi(M2n+1) = Sigma(l)(i=1) ind(x(i)) + Sigma(k)(i=1) ind(m(i)).
- 1-Aug-2014
- Ukrainian Mathematical Journal. New York: Springer, v. 66, n. 3, p. 347-351, 2014.
- 347-351
- Springer
- http://dx.doi.org/10.1007/s11253-014-0935-6
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/116350
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.