You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/116549
Title: 
Predicting soluble solid content in intact jaboticaba [Myrciaria jaboticaba (Vell.) O. Berg] fruit using near-infrared spectroscopy and chemometrics
Author(s): 
Institution: 
  • Universidade de São Paulo (USP)
  • Univ Fed Rio Grande do Norte
  • Universidade Estadual Paulista (UNESP)
ISSN: 
0308-8146
Sponsorship: 
  • Graduate Program in Chemistry (PPGQ) of UFRN
  • FAPERN
  • Pro-Reitoria de Pesquisa da Universidade de Sao Paulo
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Sponsorship Process Number: 
  • FAPERN: 005/2012
  • Pro-Reitoria de Pesquisa da Universidade de Sao Paulo10.1.25403.1.1
  • Pro-Reitoria de Pesquisa da Universidade de Sao Paulo2011.1.6858.1.8
  • FAPESP: 08/51408-1
  • CNPq: 477386/2011-3
Abstract: 
The aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIR) as a rapid and non-destructive method to determine soluble solid content (SSC) in intact jaboticaba [Myrciaria jaboticaba (Veil.) O. Berg] fruit. Multivariate calibration techniques were compared with pre-processed data and variable selection algorithms, such as partial least squares (PLS), interval partial least squares (iPLS), a genetic algorithm (GA), a successive projections algorithm (SPA) and nonlinear techniques (BP-ANN, back propagation of artificial neural networks; LS-SVM, least squares support vector machine) were applied to building the calibration models. The PLS model produced prediction accuracy (R-2 = 0.71, RMSEP = 1.33 degrees Brix, and RPD = 1.65) while the BP-ANN model (R-2 = 0.68, RMSEM = 1.20 degrees Brix, and RPD = 1.83) and LS-SVM models achieved lower performance metrics (R-2 = 0.44, RMSEP = 1.89 degrees Brix, and RPD = 1.16). This study was the first attempt to use NIR spectroscopy as a non-destructive method to determine SSC jaboticaba fruit. (C) 2014 Elsevier Ltd. All rights reserved.
Issue Date: 
15-Sep-2014
Citation: 
Food Chemistry. Oxford: Elsevier Sci Ltd, v. 159, p. 458-462, 2014.
Time Duration: 
458-462
Publisher: 
Elsevier B.V.
Keywords: 
  • NIR spectroscopy
  • PLS
  • BP-ANN
  • LS-SVM
  • Variables selection
Source: 
http://dx.doi.org/10.1016/j.foodchem.2014.03.066
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/116549
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.