Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/116549
- Title:
- Predicting soluble solid content in intact jaboticaba [Myrciaria jaboticaba (Vell.) O. Berg] fruit using near-infrared spectroscopy and chemometrics
- Universidade de São Paulo (USP)
- Univ Fed Rio Grande do Norte
- Universidade Estadual Paulista (UNESP)
- 0308-8146
- Graduate Program in Chemistry (PPGQ) of UFRN
- FAPERN
- Pro-Reitoria de Pesquisa da Universidade de Sao Paulo
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- FAPERN: 005/2012
- Pro-Reitoria de Pesquisa da Universidade de Sao Paulo10.1.25403.1.1
- Pro-Reitoria de Pesquisa da Universidade de Sao Paulo2011.1.6858.1.8
- FAPESP: 08/51408-1
- CNPq: 477386/2011-3
- The aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIR) as a rapid and non-destructive method to determine soluble solid content (SSC) in intact jaboticaba [Myrciaria jaboticaba (Veil.) O. Berg] fruit. Multivariate calibration techniques were compared with pre-processed data and variable selection algorithms, such as partial least squares (PLS), interval partial least squares (iPLS), a genetic algorithm (GA), a successive projections algorithm (SPA) and nonlinear techniques (BP-ANN, back propagation of artificial neural networks; LS-SVM, least squares support vector machine) were applied to building the calibration models. The PLS model produced prediction accuracy (R-2 = 0.71, RMSEP = 1.33 degrees Brix, and RPD = 1.65) while the BP-ANN model (R-2 = 0.68, RMSEM = 1.20 degrees Brix, and RPD = 1.83) and LS-SVM models achieved lower performance metrics (R-2 = 0.44, RMSEP = 1.89 degrees Brix, and RPD = 1.16). This study was the first attempt to use NIR spectroscopy as a non-destructive method to determine SSC jaboticaba fruit. (C) 2014 Elsevier Ltd. All rights reserved.
- 15-Sep-2014
- Food Chemistry. Oxford: Elsevier Sci Ltd, v. 159, p. 458-462, 2014.
- 458-462
- Elsevier B.V.
- NIR spectroscopy
- PLS
- BP-ANN
- LS-SVM
- Variables selection
- http://dx.doi.org/10.1016/j.foodchem.2014.03.066
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/116549
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.