Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/117289
- Title:
- Controlled Synthesis of Layered Sn3O4 Nanobelts by Carbothermal Reduction Method and Their Gas Sensor Properties
- Universidade Estadual Paulista (UNESP)
- 1533-4880
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- FAPESP: 06/56836-6
- FAPESP: 09/13491-7
- This paper reports both the controlled synthesis of Sn3O4 nanobelts by carbothermal reduction method and the gas sensor properties of these nanostructures. The synthesized material was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and gas sensor measurements. The results showed that the Sn3O4 nanobelts grow in a layered way and the careful control of experimental parameters is fundamental for stabilization of the correct phase. From the gas sensor measurements using oxygen as analyte gas, it was observed that the Sn3O4 nanobelts exhibit n-type behavior and both the sensitivity and the response time are dependent on the oxygen concentration. A model based on molecules adsorption was proposed to illustrate the mechanism of gas detection of these nanostructures. In summary, these results indicate that Sn3O4 nanobelts synthesized by carbothermal reduction method are promising to be applied as gas sensors.
- 1-Sep-2014
- Journal Of Nanoscience And Nanotechnology. Valencia: Amer Scientific Publishers, v. 14, n. 9, p. 6662-6668, 2014.
- 6662-6668
- Amer Scientific Publishers
- Sn3O4
- Nanobelts
- Carbothermal Reduction Method
- Gas Sensor
- http://dx.doi.org/10.1166/jnn.2014.9356
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/117289
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.