Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/12246
- Title:
- Time-dependent alterations of soluble and cellular components in human milk
- Univ Fed Mato Grosso
- Human Milk Bank Attent Ctr Women
- Universidade Estadual Paulista (UNESP)
- 0929-1016
- São Paulo State University (UNESP), São Paulo, Brazil
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- FAPESP: 08/09187-8
- This study sought to determine the chronobiological variations in soluble and cellular components of human breast milk. The material was collected from 36 mothers at three stages of maturity - 3 days (colostrum), 10 days (transitional milk) and 30 days (mature milk) postpartum - and at two times of day - diurnal (12:00 h) and nocturnal (24: 00 h) - making a total of 216 samples. Fat and calorie content, antibody concentration, C3 and C4 proteins of the complement system, superoxide anion release by milk mononuclear (MN) and polymorphonuclear (PMN) phagocytes, and concentration of the superoxide dismutase enzyme (CuZn-SOD) were determined. No difference in fat concentration was found between milk collected at the different times or between milk maturation stages but in the transitional milk the calorie concentration was higher in the nocturnal period. IgA was higher in milk collected in the diurnal period regardless of milk maturation. IgG and IgM were at higher concentrations in the diurnal period for both transitional and mature milk. The C3 protein increased significantly in the diurnal period regardless of milk maturation, and the C4 protein increased significantly during the diurnal period in the colostrum and transitional milk stages. Mature milk MN phagocytes had the highest superoxide during the diurnal period. Superoxide release by PMN phagocytes was higher in colostrum and mature milk collected in the diurnal period. CuZn-SOD increased significantly in diurnal and nocturnal colostrum. This chronobiological variation during the first month postpartum may represent an additional breastfeeding mechanism to improve adaptation to environmental changes and establish biological rhythms in the temporal synchronization process.
- 1-Jan-2010
- Biological Rhythm Research. Abingdon: Taylor & Francis Ltd, v. 41, n. 5, p. 333-347, 2010.
- 333-347
- Taylor & Francis Ltd
- human milk
- colostrum phagocytes
- biological rhythms
- superoxide anion
- antibody
- http://dx.doi.org/10.1080/09291010903407441
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/12246
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.