You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/122732
Title: 
Geometric singular perturbartion theory for non-smooth dynamical systems
Author(s): 
Institution: 
Universidade Estadual Paulista (UNESP)
ISSN: 
0214-1493
Sponsorship: 
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Sponsorship Process Number: 
FAPESP: 2013/21947-6
Abstract: 
In this article we deal with singularly perturbed Filippov systems Zε: (1) ˙x = ( F(x, y, ε) if h(x, y, ε) ≤ 0, G(x, y, ε) if h(x, y, ε) ≥ 0, εy˙ = H(x, y, ε), where ε ∈ R is a small parameter, x ∈ Rn, n ≥ 2, and y ∈ R denote the slow and fast variables, respectively, and F, G, h, and H are smooth maps. We study the effect of singular perturbations at typical singularities of Z0. Special attention will be dedicated to those points satisfying q ∈ {h(x, y, 0) = 0} ∩ {H(x, y, 0) = 0} where F or G is tangent to {h(x, y, 0) = 0}. The persistence and the stability properties of those objects are investigated.
Issue Date: 
2014
Citation: 
Publicacions Matemàtiques, v. EXTRA, p. 111-134, 2014.
Time Duration: 
111-134
Keywords: 
  • Filippov systems
  • singular perturbation
  • tangency points
Source: 
http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_Extra14_06
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/122732
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.