Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/122732
- Title:
- Geometric singular perturbartion theory for non-smooth dynamical systems
- Universidade Estadual Paulista (UNESP)
- 0214-1493
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- FAPESP: 2013/21947-6
- In this article we deal with singularly perturbed Filippov systems Zε: (1) ˙x = ( F(x, y, ε) if h(x, y, ε) ≤ 0, G(x, y, ε) if h(x, y, ε) ≥ 0, εy˙ = H(x, y, ε), where ε ∈ R is a small parameter, x ∈ Rn, n ≥ 2, and y ∈ R denote the slow and fast variables, respectively, and F, G, h, and H are smooth maps. We study the effect of singular perturbations at typical singularities of Z0. Special attention will be dedicated to those points satisfying q ∈ {h(x, y, 0) = 0} ∩ {H(x, y, 0) = 0} where F or G is tangent to {h(x, y, 0) = 0}. The persistence and the stability properties of those objects are investigated.
- 2014
- Publicacions Matemàtiques, v. EXTRA, p. 111-134, 2014.
- 111-134
- Filippov systems
- singular perturbation
- tangency points
- http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_Extra14_06
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/122732
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.