You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/122734
Title: 
Quaternion orders over quadratic integer rings from arithmetic fuchsian groups
Author(s): 
Institution: 
Universidade Estadual Paulista (UNESP)
ISSN: 
1311-1728
Abstract: 
In this paper we show that the quaternion orders OZ[ √ 2] ≃ ( √ 2, −1)Z[ √ 2] and OZ[ √ 3] ≃ (3 + 2√ 3, −1)Z[ √ 3], appearing in problems related to the coding theory [4], [3], are not maximal orders in the quaternion algebras AQ( √ 2) ≃ ( √ 2, −1)Q( √ 2) and AQ( √ 3) ≃ (3 + 2√ 3, −1)Q( √ 3), respectively. Furthermore, we identify the maximal orders containing these orders.
Issue Date: 
2012
Citation: 
International Journal of Applied Mathematics, v. 25, n. 3, p. 393-404, 2012.
Time Duration: 
393-404
Keywords: 
  • Hilbert symbol
  • arithmetic Fuchsian group
  • quaternion order
  • coding theory
Source: 
http://www.diogenes.bg/ijam/contents/index.html
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/122734
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.