Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/127540
- Title:
- O invariante E(G, W, M): algumas propriedades e aplicações na teoria de decomposição de grupos
- Silva, Letícia Sanches
- Universidade Estadual Paulista (UNESP)
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- In [6], Andrade and Fanti defined the invariant E(G,W,M), where G is a group, W is a G-set and M is a Z2G-module, and presented some results using E(G,W, Z2) ( Z2 seen as a trivial Z2G-module) related to splitting of groups and duality. E(G,W,M) is defined using (co)homology of groups for the pair ((G,W),M) following [14]. The purpose of this work is to present the results given in [6] but adding proofs of some results that were referred but not proved there, such as the invariance ofE(G,W,M) for isomorphic pairs and the independence of the set of orbit representatives in W. We also attempt to generalize some results for any Z2G-m'odulo M (not necessarily Z2) and present some other properties of E(G,W,M), specially for the Z2G-module FTG where T is a subgroup of G, exploring, whenever possible, its relationship with splitting of groups. Many of those results are strongly related with some given in [7] for the invariant of pairs of groups E(G, S,M) where S is a family of subgroups of G.
- Em [6], Andrade e Fanti definiram o invariante E(G, W, M), sendo G um grupo, W um G-conjunto e M um Z2G-m'odulo, e apresentaram alguns resultados usando E(G, W, Z2) ( Z2 visto como Z2G-m'odulo trivial) relacionados com decomposi¸c˜ao de grupos e dualidade. E(G, W, M) 'e definido usando (co)homologia de grupos para o par ((G, W), M) seguindo [14]. O objetivo deste trabalho 'e apresentar os resultados dados em [6], por'em acrescentando as provas de alguns resultados que s˜ao mencionados em [6], mas que n˜ao foram provados, como por exemplo, a invariˆancia de E(G, W, M) por pares isomorfos e a independˆencia do conjunto de representantes das G-'orbitas. Procurou-se tamb'em generalizar alguns resultados para um Z2G-m'odulo M qualquer (n˜ao necessariamente Z2), e apresentar algumas outras propriedades de E(G, W, M), em especial para o Z2G-m'odulo FTG, sendo T um subgrupo de G, explorando, sempre que poss'ıvel, sua rela¸c˜ao com decomposi¸c˜ao de grupos. Muitos desses resultados est˜ao fortemente relacionados com alguns apresentados em [7], para o invariante de pares de grupos E(G, S, M), sendo S uma fam'ılia de subgrupos de G.
- 27-Feb-2013
- SILVA, Letícia Sanches. O invariante E(G, W, M): algumas propriedades e aplicações na teoria de decomposição de grupos. 2013. 144 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas, 2013.
- 144 f. : il.
- Universidade Estadual Paulista (UNESP)
- Cohomologia de grupos
- Decomposição de grupos
- Invariante E (G,W,M)
- Acesso aberto
- outro
- http://repositorio.unesp.br/handle/11449/127540
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.