You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129762
Title: 
Existence and multiplicity of solutions for a prescribed mean-curvature problem with critical growth
Author(s): 
Institution: 
  • Universidade Federal do Pará (UFPA)
  • Universidade Estadual Paulista (UNESP)
ISSN: 
1072-6691
Sponsorship: 
  • PROCAD/CASADINHO
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Sponsorship Process Number: 
  • PROCAD/CASADINHO: 552101/2011-7
  • CNPq: 301242/2011-9
  • CNPq: 200237/2012-8
  • FAPESP: 2014/16136-1
  • CNPq: 442520/2014-0
Abstract: 
In this work we study an existence and multiplicity of solutions for the prescribed mean-curvature problem with critical growth,-div (del u/root 1+vertical bar del u vertical bar(2)) = lambda vertical bar u vertical bar(q-2) u + vertical bar u vertical bar(2*-2)u in Omegau = 0 on partial derivative Omega,where Omega is a bounded smooth domain of R-N, N >= 3 and 1 < q < 2. To employ variational arguments, we consider an auxiliary problem which is proved to have infinitely many solutions by genus theory. A clever estimate in the gradient of the solutions of the modified problem is necessary to recover solutions of the original problem.
Issue Date: 
7-Apr-2015
Citation: 
Electronic Journal Of Differential Equations. San Marcos: Texas State University, p. 1-18, 2015.
Time Duration: 
1-18
Publisher: 
Texas State University
Keywords: 
  • Prescribed mean-curvature problem
  • Critical exponent
  • Variational methods
Source: 
http://arxiv.org/abs/1304.4462
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/129762
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.