You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129817
Title: 
Differential orthogonality: Laguerre and Hermite cases with applications
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Univ Carlos III Madrid
ISSN: 
0021-9045
Sponsorship: 
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Ministerio de Economia y Competitividad of Spain
Sponsorship Process Number: 
  • FAPESP: 2012/21042-0
  • Ministerio de Economia y Competitividad of Spain: MTM2012-36732-C03-01
Abstract: 
Let mu be a finite positive Borel measure supported on R, L[f] = xf ''+ (alpha +1 - x)f'with alpha > -1, or L[f] = 1/2f ''- xf', and m a natural number. We study algebraic, analytic and asymptotic properties of the sequence of monic polynomials {Q(n)}(n>m) that satisfy the orthogonality relationsintegral L[Q(n)](x)x(k)d mu(x) = 0 for all 0 <= k <= n - 1.We also provide a fluid dynamics model for the zeros of these polynomials. (C) 2015 Elsevier Inc. All rights reserved.
Issue Date: 
1-Aug-2015
Citation: 
Journal Of Approximation Theory. San Diego: Academic Press Inc Elsevier Science, v. 196, p. 111-130, 2015.
Time Duration: 
111-130
Publisher: 
Elsevier B.V.
Keywords: 
  • Orthogonal polynomials
  • Ordinary differential operators
  • Asymptotic analysis
  • Weak star convergence
  • Hydrodynamic
Source: 
http://www.sciencedirect.com/science/article/pii/S0021904515000611
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/129817
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.