Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/130718
- Title:
- Comparative study between powers of sigmoid functions, MLP-backpropagation and polynomials in function approximation problems
- Universidade Estadual Paulista (UNESP)
- 0277-786X
- Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.
- 1-Jan-1999
- Signal Processing, Sensor Fusion, and Target Recognition Viii. Bellingham: Spie-int Soc Optical Engineering, v. 3720, p. 451-458, 1999.
- 451-458
- Spie - Int Soc Optical Engineering
- Approximation theory
- Backpropagation
- Function evaluation
- Polynomials
- Function approximation
- Polynomials powers of sigmoid (PPS)
- Multilayer neural networks
- http://dx.doi.org/10.1117/12.357191
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/130718
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.